Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Health ; 12(1): 84, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24090339

RESUMO

BACKGROUND: Elevated cardiovascular disease risk has been reported with proximity to highways or busy roadways, but proximity measures can be challenging to interpret given potential confounders and exposure error. METHODS: We conducted a cross sectional analysis of plasma levels of C-Reactive Protein (hsCRP), Interleukin-6 (IL-6), Tumor Necrosis Factor alpha receptor II (TNF-RII) and fibrinogen with distance of residence to a highway in and around Boston, Massachusetts. Distance was assigned using ortho-photo corrected parcel matching, as well as less precise approaches such as simple parcel matching and geocoding addresses to street networks. We used a combined random and convenience sample of 260 adults >40 years old. We screened a large number of individual-level variables including some infrequently collected for assessment of highway proximity, and included a subset in our final regression models. We monitored ultrafine particle (UFP) levels in the study areas to help interpret proximity measures. RESULTS: Using the orthophoto corrected geocoding, in a fully adjusted model, hsCRP and IL-6 differed by distance category relative to urban background: 43% (-16%,141%) and 49% (6%,110%) increase for 0-50 m; 7% (-39%,45%) and 41% (6%,86%) for 50-150 m; 54% (-2%,142%) and 18% (-11%,57%) for 150-250 m, and 49% (-4%, 131%) and 42% (6%, 89%) for 250-450 m. There was little evidence for association for TNF-RII or fibrinogen. Ortho-photo corrected geocoding resulted in stronger associations than traditional methods which introduced differential misclassification. Restricted analysis found the effect of proximity on biomarkers was mostly downwind from the highway or upwind where there was considerable local street traffic, consistent with patterns of monitored UFP levels. CONCLUSION: We found associations between highway proximity and both hsCRP and IL-6, with non-monotonic patterns explained partly by individual-level factors and differences between proximity and UFP concentrations. Our analyses emphasize the importance of controlling for the risk of differential exposure misclassification from geocoding error.


Assuntos
Poluentes Atmosféricos/sangue , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Adulto , Idoso , Poluentes Atmosféricos/toxicidade , Biomarcadores/sangue , Boston/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Estudos Transversais , Monitoramento Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Material Particulado/análise , Características de Residência , Fatores de Risco , Emissões de Veículos/análise
2.
Atmos Environ (1994) ; 74: 326-337, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429707

RESUMO

Exposure to traffic-related air pollution has been linked to increased risks of cardiopulmonary disease, asthma, and reduced lung function. Ultrafine particles (UFP; aerodynamic diameter < 100 nm), one component of traffic exhaust, may contribute to these risks. This paper describes the development of UFP emission factors, an important input parameter for dispersion models used for exposure assessment. Measurements of particle number concentration (PNC), a proxy for UFP, were performed in the Central Artery Tunnel on Interstate-93 in Boston (MA, USA). The tunnel system consists of two, unidirectional bores, which each carry ~9 × 104 vehicles per day (diesel vehicles comprise 2-5% of the fleet in the southbound tunnel and 1-3% in the northbound tunnel). A tunnel was chosen for study because it provided an enclosed environment where the effe1cts of lateral and vertical dispersion by ambient air and photochemical reactions would be minimized. Data were collected using a mobile platform equipped with rapid-response instruments for measuring PNC (4-3000 nm) as well as NOx. Because Boston is located in a temperate region (latitude 42° N), we were interested in studying seasonal and diurnal differences in emission factors. To characterize seasonal differences, mobile monitoring was performed on 36 days spaced at 7-14 day intervals over one year (Sept. 2010-Sept. 2011); to characterize diurnal differences intensive mobile monitoring (n = 90 total trips through the tunnels) was performed over the course of two consecutive days in January 2012. All data collected during congested traffic conditions (~7% of total data set) were removed from the analysis. The median PNC inside the two tunnels for all trips during the 12-month campaign was 3-4-fold higher than on I-93 immediately outside the tunnel and 7-10-fold higher than on I-93 4 km from the tunnel. The median particle number emission factors (EFPN) (±median absolute deviation) for the southbound and northbound tunnels were 5.1 × 1014 (2.3 × 1014) and 1.4 × 1014 (4.2 × 1013) particles vehicle-1 km-1, respectively. EFPN values were ~2-fold higher in winter and spring (average ambient temperature at the time of monitoring = 6.9 °C) compared to summer and fall (12.9 °C), and ~2-fold higher in the morning (-7.9 °C) compared to the afternoon/ evening (-0.9 °C) on two consecutive winter days. Our results suggest that seasonal and diurnal variations in particulate emissions from highway vehicles may be important to consider in developing EFPN values.

3.
Atmos Environ (1994) ; 61: 253-264, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23144586

RESUMO

Accurate quantification of exposures to traffic-related air pollution in near-highway neighborhoods is challenging due to the high degree of spatial and temporal variation of pollutant levels. The objective of this study was to measure air pollutant levels in a near-highway urban area over a wide range of traffic and meteorological conditions using a mobile monitoring platform. The study was performed in a 2.3-km(2) area in Somerville, Massachusetts (USA), near Interstate I-93, a highway that carries 150,000 vehicles per day. The mobile platform was equipped with rapid-response instruments and was driven repeatedly along a 15.4-km route on 55 days between September 2009 and August 2010. Monitoring was performed in 4-6-hour shifts in the morning, afternoon and evening on both weekdays and weekends in winter, spring, summer and fall. Measurements were made of particle number concentration (PNC; 4-3,000 nm), particle size distribution, fine particle mass (PM(2.5)), particle-bound polycyclic aromatic hydrocarbons (pPAH), black carbon (BC), carbon monoxide (CO), and nitrogen oxides (NO and NO(x)). The highest pollutant concentrations were measured within 0-50 m of I-93 with distance-decay gradients varying depending on traffic and meteorology. The most pronounced variations were observed for PNC. Annual median PNC 0-50 m from I-93 was two-fold higher compared to the background area (>1 km from I-93). In general, PNC levels were highest in winter and lowest in summer and fall, higher on weekdays and Saturdays compared to Sundays, and higher during morning rush hour compared to later in the day. Similar spatial and temporal trends were observed for NO, CO and BC, but not for PM(2.5). Spatial variations in PNC distance-decay gradients were non-uniform largely due to contributions from local street traffic. Hour-to-hour, day-to-day and season-to-season variations in PNC were of the same magnitude as spatial variations. Datasets containing fine-scale temporal and spatial variation of air pollution levels near highways may help to inform exposure assessment efforts.

4.
Int J Environ Res Public Health ; 12(7): 7814-38, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26184257

RESUMO

Exposure to traffic-generated ultrafine particles (UFP; particles <100 nm) is likely a risk factor for cardiovascular disease. We conducted a trial of high-efficiency particulate arrestance (HEPA) filtration in public housing near a highway. Twenty residents in 19 apartments living <200 m from the highway participated in a randomized, double-blind crossover trial. A HEPA filter unit and a particle counter (measuring particle number concentration (PNC), a proxy for UFP) were installed in living rooms. Participants were exposed to filtered air for 21 days and unfiltered air for 21 days. Blood samples were collected and blood pressure measured at days 0, 21 and 42 after a 12-hour fasting period. Plasma was analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor necrosis factor alpha-receptor II (TNF-RII) and fibrinogen. PNC reductions ranging from 21% to 68% were recorded in 15 of the apartments. We observed no significant differences in blood pressure or three of the four biomarkers (hsCRP, fibrinogen, and TNF-RII) measured in participants after 21-day exposure to HEPA-filtered air compared to measurements after 21-day exposure to sham-filtered air. In contrast, IL-6 concentrations were significantly higher following HEPA filtration (0.668 pg/mL; CI = 0.465-0.959) compared to sham filtration. Likewise, PNC adjusted for time activity were associated with increasing IL-6 in 14- and 21-day moving averages, and PNC was associated with decreasing blood pressure in Lags 0, 1 and 2, and in a 3-day moving average. These negative associations were unexpected and could be due to a combination of factors including exposure misclassification, unsuccessful randomization (i.e., IL-6 and use of anti-inflammatory medicines), or uncontrolled confounding. Studies with greater reduction in UFP levels and larger sample sizes are needed. There also needs to be more complete assessment of resident time activity and of outdoor vs. indoor source contributions to UFP exposure. HEPA filtration remains a promising, but not fully realized intervention.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Doenças Cardiovasculares/prevenção & controle , Material Particulado/efeitos adversos , Habitação Popular , Adulto , Biomarcadores , Proteína C-Reativa , Sistema Cardiovascular/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Filtração , Humanos , Interleucina-6 , Masculino , Fatores de Risco , Emissões de Veículos/intoxicação
5.
Artigo em Inglês | MEDLINE | ID: mdl-23543021

RESUMO

BACKGROUND: Particulate air pollution, including from motor vehicles, is associated with cardiovascular disease. OBJECTIVES: To describe lessons learned from installing air filtration units in public housing apartments next to a major highway. METHODS: We reviewed experience with recruitment, retention, and acceptance of the air filtration units. RESULTS: Recruitment and retention have been challenging, but similar to other studies in public housing. Equipment noise and overheated apartments during hot weather have been notable complaints from participants. In addition, we found that families with members with Alzheimer's or mental disability were less able to tolerate the equipment. CONCLUSIONS: For this research, the primary lesson is that working closely with each participant is important. A future public health program would need to address issues of noise and heat to make the intervention more acceptable to residents.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Ruído/efeitos adversos , Material Particulado/efeitos adversos , Habitação Popular , Filtros de Ar , Doenças Cardiovasculares/etiologia , Pesquisa Participativa Baseada na Comunidade , Humanos , Ruído/prevenção & controle , Emissões de Veículos/prevenção & controle , Ventilação/instrumentação , Ventilação/métodos , Ventilação/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA