Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Exp Bot ; 72(4): 1432-1448, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33165515

RESUMO

Resistance (R) gene-mediated resistance is a robust and efficient antiviral immune system in the plants. Thus, when R-mediated resistance was suppressed at elevated temperatures, resistance towards viruses was expected to be completely collapsed. Nonetheless, the multiplication of Tobacco mosaic virus pathotype P0 (TMV-P0) was inhibited, and TMV-P0 particles were only occasionally present in the systemic leaves of pepper plants (Capsicum annuum). RNAi-mediated RNA silencing is a well-known antiviral immune mechanism. At elevated temperatures, RNAi-mediated antiviral resistance was induced and virus-derived siRNAs (vsiRNAs) were dramatically increased. Through sRNA-sequencing (sRNA-Seq) analysis, we revealed that vsiRNAs derived from TMV-P0 were greatly increased. Intriguingly, virus-infected plants could select the temperature-specific vsiRNAs for antiviral resistance from the amplified vsiRNAs at elevated temperatures. Pre-application of these temperature-specific vsiRNAs endowed antiviral resistance of the plants. Therefore, plants sustain antiviral resistance by activating RNAi-mediated resistance, based on temperature-specific vsiRNAs at elevated temperatures.


Assuntos
Capsicum , Vírus do Mosaico do Tabaco , Capsicum/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Interferência de RNA , Temperatura
2.
Biochem Biophys Res Commun ; 524(4): 951-956, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32059849

RESUMO

Innate immunity in plants relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the plant cell surface. CaLecRK-S.5, a pepper L-type lectin receptor kinase, has been shown to confer broad-spectrum resistance through priming activation. To further elucidate the molecular mechanism of CaLecRK-S.5, transgenic tobacco plants were generated in this study. Interestingly, hemizygous transgenic plants exhibited a high accumulation of CaLecRK-S.5, but this accumulation was completely abolished in homozygous transgenic plants by a cosuppression mechanism. Gain-of-function and loss-of-function analyses revealed that CaLecRK-S.5 plays a positive role in Phytophthora elicitin-mediated defense responses.


Assuntos
Nicotiana/imunologia , Phytophthora infestans/imunologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/imunologia , Proteínas Quinases/imunologia , Proteínas/imunologia , Piper/genética , Piper/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Imunidade Vegetal , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Nicotiana/genética , Transgenes
3.
J Exp Bot ; 71(19): 6142-6158, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640023

RESUMO

The expression of Capsicum annuum HEAT SHOCK PROTEIN 26.5 (CaHsp26.5) was triggered by the inoculation of Tobacco mosaic virus pathotype P0 (TMV-P0) but its function in the defense response of plants is unknown. We used gene silencing and overexpression approaches to investigate the effect of CaHsp26.5 expression on different plant RNA viruses. Moreover, we performed protein-protein and protein-RNA interaction assays to study the mechanism of CaHsp26.5 function. CaHsp26.5 binding to a short poly-cytosine motif in the 3'-untranslated region of the genome of some viruses triggers the expression of several defense-related genes such as PATHOGENESIS-RELATED GENE 1 with the help of a transcription factor, NAC DOMAIN-CONTAINING PROTEIN 81 (ATAF2). Thus, an elevated CaHsp26.5 level was accompanied by increased plant resistance against plant viruses such as Cucumber mosaic virus strain Korea. However, the movement proteins of Pepper mild mottle virus pathotype P1,2,3 and TMV-P0 were shown to be able to interact with CaHsp26.5 to maintain the integrity of their proteins. Our work shows CaHsp26.5 as a positive player in the plant defense response against several plant RNA viruses. However, some tobamoviruses can hijack CaHsp26.5's chaperone activity for their own benefit.


Assuntos
Capsicum , Vírus do Mosaico do Tabaco , Tobamovirus , Sequência de Bases , Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Tobamovirus/genética , Tobamovirus/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(28): E5712-E5720, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652324

RESUMO

Plant pathogens cause huge yield losses. Plant defense often depends on toxic secondary metabolites that inhibit pathogen growth. Because most secondary metabolites are also toxic to the plant, specific transporters are needed to deliver them to the pathogens. To identify the transporters that function in plant defense, we screened Arabidopsis thaliana mutants of full-size ABCG transporters for hypersensitivity to sclareol, an antifungal compound. We found that atabcg34 mutants were hypersensitive to sclareol and to the necrotrophic fungi Alternaria brassicicola and Botrytis cinereaAtABCG34 expression was induced by Abrassicicola inoculation as well as by methyl-jasmonate, a defense-related phytohormone, and AtABCG34 was polarly localized at the external face of the plasma membrane of epidermal cells of leaves and roots. atabcg34 mutants secreted less camalexin, a major phytoalexin in Athaliana, whereas plants overexpressing AtABCG34 secreted more camalexin to the leaf surface and were more resistant to the pathogen. When treated with exogenous camalexin, atabcg34 mutants exhibited hypersensitivity, whereas BY2 cells expressing AtABCG34 exhibited improved resistance. Analyses of natural Arabidopsis accessions revealed that AtABCG34 contributes to the disease resistance in naturally occurring genetic variants, albeit to a small extent. Together, our data suggest that AtABCG34 mediates camalexin secretion to the leaf surface and thereby prevents Abrassicicola infection.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Alternaria/patogenicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Botrytis/metabolismo , Indóis/metabolismo , Doenças das Plantas/microbiologia , Tiazóis/metabolismo , Acetatos/farmacologia , Arabidopsis/metabolismo , Transporte Biológico , Ciclopentanos/farmacologia , Diterpenos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Mutação , Oxilipinas/farmacologia , Fenótipo , Filogenia , Folhas de Planta/metabolismo , Transdução de Sinais
5.
PLoS Genet ; 10(10): e1004655, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340333

RESUMO

Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector.


Assuntos
Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Motivos de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Ralstonia solanacearum/patogenicidade
6.
J Exp Bot ; 67(19): 5725-5741, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27647723

RESUMO

In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0 Additionally, ß-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with ß-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming.


Assuntos
Capsicum/genética , Resistência à Doença/genética , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Capsicum/enzimologia , Capsicum/fisiologia , Capsicum/virologia , Resistência à Doença/fisiologia , Ativação Enzimática , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica , Genes de Plantas/genética , Lectinas/metabolismo , Filogenia , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Alinhamento de Sequência , Vírus do Mosaico do Tabaco
7.
Proc Natl Acad Sci U S A ; 110(2): 779-84, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23269841

RESUMO

Posttranscriptional/translational regulation of gene expression is mediated by diverse RNA binding proteins and plays an important role in development and defense processes. Among the RNA-binding proteins, the mammalian Pumilio RNA-binding family (Puf) acts as posttranscriptional and translational repressors. An Arabidopsis Puf mutant, apum5-D, was isolated during a T-DNA insertional mutant screen for mutants with reduced susceptibility to Cucumber mosaic virus (CMV) infection. Interestingly, CMV RNA contained putative Pumilio-homology domain binding motifs in its 3' untranslated region (UTR) and internal places in its genome. APUM5 directly bound to the 3' UTR motifs and some internal binding motifs in CMV RNAs in vitro and in vivo. We showed that APUM5 acts as a translational repressor that regulates the 3' UTR of CMV and affects CMV replication. This study uncovered a unique defense system that Arabidopsis APUM5 specifically regulates CMV infection by the direct binding of CMV RNAs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cucumovirus/metabolismo , Doenças das Plantas/virologia , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Sequência de Bases , Southern Blotting , Cucumovirus/genética , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica de Plantas/genética , Glucuronidase/metabolismo , Técnicas Histológicas , Imunoprecipitação , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
8.
BMC Plant Biol ; 14: 75, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666827

RESUMO

BACKGROUND: A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. RESULTS: APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3' untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3' UTR. CONCLUSIONS: These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3' UTRs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/genética , Regiões 3' não Traduzidas/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Alternaria/efeitos dos fármacos , Alternaria/fisiologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Sequência de Bases , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genes Reporter , Germinação/efeitos dos fármacos , Germinação/genética , Glucuronidase/metabolismo , Manitol/farmacologia , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/fisiologia , Proteínas de Ligação a RNA/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
9.
J Exp Bot ; 64(1): 129-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22945944

RESUMO

The role of an expansin gene (IbEXP1) in the formation of the storage root (SR) was investigated by expression pattern analysis and characterization of IbEXP1-antisense sweetpotato (Ipomoea batatas cv. Yulmi) plants in an attempt to elucidate the molecular mechanism underlying SR development in sweetpotato. The transcript level of IbEXP1 was high in the fibrous root (FR) and petiole at the FR stage, but decreased significantly at the young storage root (YSR) stage. IbEXP1-antisense plants cultured in vitro produced FRs which were both thicker and shorter than those of wild-type (WT) plants. Elongation growth of the epidermal cells was significantly reduced, and metaxylem and cambium cell proliferation was markedly enhanced in the FRs of IbEXP1-antisense plants, resulting in an earlier thickening growth in these plants relative to WT plants. There was a marked reduction in the lignification of the central stele of the FRs of the IbEXP1-antisense plants, suggesting that the FRs of the mutant plants possessed a higher potential than those of WT plants to develop into SRs. IbEXP1-antisense plants cultured in soil produced a larger number of SRs and, consequently, total SR weight per IbEXP1-antisense plant was greater than that per WT plant. These results demonstrate that SR development was accelerated in IbEXP1-antisense plants and suggest that IbEXP1 plays a negative role in the formation of SR by suppressing the proliferation of metaxylem and cambium cells to inhibit the initial thickening growth of SRs. IbEXP1 is the first sweetpotato gene whose role in SR development has been directly identified in soil-grown transgenic sweetpotato plants.


Assuntos
Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Ipomoea batatas/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Lignina/metabolismo , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
10.
Biochem Biophys Res Commun ; 417(2): 910-7, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22209846

RESUMO

Hypersensitive response (HR) cell death upon plant virus infection is an excellent plant strategy for inhibiting viral movement and obtaining systemic acquired resistance (SAR) against further infection. Various host factors are involved in these HR processes, either directly as viral resistance proteins or indirectly. We characterized a gene encoding the CaBtf3 [ß-nascent polypeptide-associated complex (NAC) subunit] of NAC from the hot pepper plant. NAC contacts nascent polypeptides to prevent aggregation and degradation of newly synthesized proteins by controlling cotranslational protein folding. CaBtf3 protein fused to green fluorescent protein predominantly localized to the nucleus. Silencing phenotype of CaBtf3 upon the Tobacco mosaic virus (TMV)-P(0) inoculation exhibited reduced HR cell death and decreased expression of some HR-associated genes, but increased TMV coat protein levels compared with TRV2 control plants. Furthermore, silencing of NbBtf3, a highly homologous gene of CaBtf3, also led to the reduced Bax- and Pto-mediated cell death. The results indicate that CaBtf3 might be involved in HR cell death and could function as a transcription factor in the nucleus by transcriptional regulation of HR-related gene expression.


Assuntos
Capsicum/genética , Capsicum/virologia , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus do Mosaico do Tabaco , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Apoptose/genética , Sequência de Bases , Regulação para Baixo , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/virologia , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Transcrição Gênica
11.
Transgenic Res ; 21(2): 265-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21660481

RESUMO

Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restricted to these storage organs, we isolated the promoter region (3.0 kb) of SRD1 from sweetpotato (Ipomoea batatas cv. 'White Star') and characterized its activity in transgenic Arabidopsis, carrot, and potato using the ß-glucuronidase (GUS) gene (uidA) as a reporter gene. The SRD1 promoter conferred root-specific expression in transgenic Arabidopsis, with SRD1 promoter activity increasing in response to exogenous IAA. A time-course study of the effect of IAA (50 µM) revealed a maximum increase in SRD1 promoter activity at 24 h post-treatment initiation. A serial 5' deletion analysis of the SRD1 promoter identified regions related to IAA-inducible expression as well as regions containing positive and negative elements, respectively, controlling the expression level. In transgenic carrot, the SRD1 promoter mediated strong taproot-specific expression, as evidenced by GUS staining being strong in almost the entire taproot, including secondary phloem, secondary xylem and vascular cambium. The activity of the SRD1 promoter gradually increased with increasing diameter of the taproot in the transgenic carrot and was 10.71-fold higher than that of the CaMV35S promoter. The SRD1 promoter also directed strong tuber-specific expression in transgenic potato. Taken together, these results demonstrate that the SRD1 promoter directs strong expression restricted to the underground storage organs, such as fleshy taproots and tubers, as well as fibrous root tissues.


Assuntos
Arabidopsis/metabolismo , Daucus carota/metabolismo , Ipomoea batatas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Solanum tuberosum/metabolismo , Regiões 5' não Traduzidas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Ciclopentanos/farmacologia , DNA de Plantas/genética , DNA de Plantas/metabolismo , Daucus carota/genética , Daucus carota/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter , Glucuronidase/genética , Glucuronidase/metabolismo , Ácidos Indolacéticos/farmacologia , Ipomoea batatas/metabolismo , Oxilipinas/farmacologia , Floema/citologia , Floema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Coloração e Rotulagem , Fatores de Tempo , Sítio de Iniciação de Transcrição , Transformação Genética , Xilema/citologia , Xilema/metabolismo
12.
Biochem Biophys Res Commun ; 411(3): 613-9, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21771584

RESUMO

In plant, some WRKY transcription factors are known to play an important role in the transcriptional reprogramming associated with the immune response. By using WRKY-domain-specific differential display procedure, we isolated CaWRKYb gene, which is rapidly induced during an incompatible interaction between hot pepper and Tobacco mosaic virus (TMV) pathotype P(0) infection. The recombinant CaWRKYb bound to the W box-containing CaPR-10 promoter probes efficiently and the specificity of binding was confirmed by mutant study and competition with cold oligonucleotides. Also, in GUS reporter activity assay using Arabidopsis protoplasts with the CaPR-10 promoter, GUS activity was increased in the presence of CaWRKYb. And CaWRKYb-knockdown plant showed reduced number of hypersensitive response local lesions upon TMV-P(0) infection. Furthermore, CaWRKYb-knockdown plant exhibited compromised resistance to TMV-P(0) by accumulating more TMV, apparently through decreased expression of CaPR-10, CaPR-1, and CaPR-5. These results suggest that CaWRKYb is involved as a positive transcription factor in defense-related signal transduction pathways in hot pepper.


Assuntos
Capsicum/virologia , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Vírus do Mosaico do Tabaco , Fatores de Transcrição/metabolismo , Capsicum/genética , Capsicum/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
13.
New Phytol ; 191(3): 746-762, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21477206

RESUMO

• In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. • To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. • Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. • These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.


Assuntos
Cucumovirus/fisiologia , Proteínas de Ligação a DNA/metabolismo , Nicotiana/fisiologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , RNA Viral/biossíntese , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Cucumovirus/genética , Cucumovirus/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , Protoplastos , Interferência de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão , Nicotiana/genética , Nicotiana/virologia , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/metabolismo , Vacúolos/virologia , Proteínas Virais/genética , Replicação Viral/fisiologia , Dedos de Zinco/genética , beta-Galactosidase
14.
J Exp Bot ; 61(5): 1337-49, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20150515

RESUMO

A sweetpotato (Ipomoea batatas cv. 'Jinhongmi') MADS-box protein cDNA (SRD1) has been isolated from an early stage storage root cDNA library. The role of the SRD1 gene in the formation of the storage root in sweetpotato was investigated by an expression pattern analysis and characterization of SRD1-overexpressing (ox) transgenic sweetpotato plants. Transcripts of SRD1 were detected only in root tissues, with the fibrous root having low levels of the transcript and the young storage root showing relatively higher transcript levels. SRD1 mRNA was mainly found in the actively dividing cells, including the vascular and cambium cells of the young storage root. The transcript level of SRD1 in the fibrous roots increased in response to 1000 muM indole-3-acetic acid (IAA) applied exogenously. During the early stage of storage root development, the endogenous IAA content and SRD1 transcript level increased concomitantly, suggesting an involvement of SRD1 during the early stage of the auxin-dependent development of the storage root. SRD1-ox sweetpotato plants cultured in vitro produced thicker and shorter fibrous roots than wild-type plants. The metaxylem and cambium cells of the fibrous roots of SRD1-ox plants showed markedly enhanced proliferation, resulting in the fibrous roots of these plants showing an earlier thickening growth than those of wild-type plants. Taken together, these results demonstrate that SRD1 plays a role in the formation of storage roots by activating the proliferation of cambium and metaxylem cells to induce the initial thickening growth of storage roots in an auxin-dependent manner.


Assuntos
Ácidos Indolacéticos/farmacologia , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Hibridização In Situ , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/genética , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Plant Cell Physiol ; 50(8): 1479-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19561057

RESUMO

The FCA protein is involved in controlling flowering time and plays more general roles in RNA-mediated chromatin silencing in Arabidopsis. It contains two RNA-binding domains and a WW domain. The FCA protein interacts with FY, a polyadenylation factor, via its WW domain. We previously characterized a rice gene, OsFCA, which was homologous to FCA. Here, we found that the OsFCA protein could interact through its WW domain with the following proteins: OsFY, a protein containing a CID domain present in RNA-processing factors such as Pcf11 and Nrd1; a protein similar to splicing factor SF1; a protein similar to FUSE splicing factor; and OsMADS8. The FY protein is associated with the 3' end processing machinery in Arabidopsis. Thus, we examined interactions between OsFY and the rice homologs (OsCstF-50, -64 and -77) of the AtCstF-50, -64 and -77 proteins. We found that OsFY could bind OsCstF50, whereas the OsCstF77 protein could bridge the interaction between OsCstF50 and OsCstF64. Taken together, our data suggest that OsFCA could interact with several proteins other than OsFY through its WW domain and may play several roles in rice.


Assuntos
Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sequência de Aminoácidos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oryza/metabolismo , Proteínas de Plantas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA de Plantas/genética , Proteínas de Ligação a RNA/genética , Técnicas do Sistema de Duplo-Híbrido , Fatores de Poliadenilação e Clivagem de mRNA/genética
16.
J Virol ; 82(10): 4823-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18321966

RESUMO

In mammalian and yeast systems, methyltransferases have been implicated in the regulation of diverse processes, such as protein-protein interactions, protein localization, signal transduction, RNA processing, and transcription. The Cucumber mosaic virus (CMV) 1a protein is essential not only for virus replication but also for movement. Using a yeast two-hybrid system with tobacco plants, we have identified a novel gene encoding a methyltransferase that interacts with the CMV 1a protein and have designated this gene Tcoi1 (tobacco CMV 1a-interacting protein 1). Tcoi1 specifically interacted with the methyltransferase domain of CMV 1a, and the expression of Tcoi1 was increased by CMV inoculation. Biochemical studies revealed that the interaction of Tcoi1 with CMV 1a protein was direct and that Tcoi1 methylated CMV 1a protein both in vitro and in vivo. The CMV 1a binding activity of Tcoi1 is in the C-terminal domain, which shows the methyltransferase activity. The overexpression of Tcoi1 enhanced the CMV infection, while the reduced expression of Tcoi1 decreased virus infectivity. These results suggest that Tcoi1 controls the propagation of CMV through an interaction with the CMV 1a protein.


Assuntos
Cucumovirus/fisiologia , Metiltransferases/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Perfilação da Expressão Gênica , Metilação , Metiltransferases/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
17.
Biochem Biophys Res Commun ; 374(4): 693-8, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18680725

RESUMO

A full length cDNA clone encoding Capsicum annuum GDSL-lipase 1 (CaGL1) was isolated by microarray analysis. The expression of CaGL1 was triggered by methyl jasmonic acid (MeJA), an important signal in abiotic/biotic stress response. However, the expression of this gene was not increased by the application of salicylic acid (SA) or ethylene treatment. And, local/systemic wounding stimuli resulted in rapid accumulation of CaGL1 mRNA. However, CaGL1 was not specifically induced during the hypersensitive response upon Tobacco mosaic virus (TMV) inoculation. By using a virus-induced gene silencing (VIGS)-based reverse genetic approach, it was observed that the suppression of CaGL1 attenuates the expression of Capsicum annuumpathogenesis-related protein 4 (CaPR-4) during wound stress. However, the CaPR-4 transcript level induced by TMV was not regulated by CaGL1 expression. These results indicate that CaGL1 may be involved in signaling pathway of MeJA and/or the wound responses through CaPR-4 expression modulation.


Assuntos
Capsicum/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Capsicum/efeitos dos fármacos , Capsicum/genética , Hidrolases de Éster Carboxílico/genética , Ciclopentanos/farmacologia , Regulação para Baixo , Etilenos/farmacologia , Dados de Sequência Molecular , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Ácido Salicílico/farmacologia , Nicotiana/enzimologia , Nicotiana/genética , Transcrição Gênica/efeitos dos fármacos
18.
Mol Cells ; 21(3): 389-94, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16819302

RESUMO

Human seven-in-absentia (SIAH)-interacting protein (SIP) is a component of the E3 ligase complex targeting beta-catenin for destruction. Arabidopsis has one SIP protein (AtSIP) with 32% amino acid sequence identity to SIP. To investigate the functions of AtSIP, we isolated an atsip knockout mutant, and generated transgenic plants overexpressing AtSIP. The growth rates and morphologies of the atsip and transgenic plants were indistinguishable from those of wild type. However, atsip plants were more susceptible to Pseudomonas syringae infection, and the transgenic plants overexpressing AtSIP were more resistant. Consistent with this, RNA blot analysis showed that the AtSIP gene is strongly induced by wounding and hydrogen peroxide treatment. In addition, when plants were infected with P. syringae, AtSIP was transiently induced prior to PR-1 induction. These observations show that Arabidopsis AtSIP plays a role in resistance to pathogenic infection.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/microbiologia , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Humanos , Peróxido de Hidrogênio/farmacologia , Mutação , Oxidantes/farmacologia , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/patogenicidade , RNA de Plantas/genética , RNA de Plantas/metabolismo , Virulência , Ferimentos e Lesões/microbiologia
19.
Sci Rep ; 5: 7981, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613640

RESUMO

Plants are constantly exposed to pathogens and environmental stresses. To minimize damage caused by these potentially harmful factors, plants respond by massive transcriptional reprogramming of various stress-related genes via major transcription factor families. One of the transcription factor families, WRKY, plays an important role in diverse stress response of plants and is often useful to generate genetically engineered crop plants. In this study, we carried out functional characterization of CaWRKYa encoding group I WRKY member, which is induced during hypersensitive response (HR) in hot pepper (Capsicum annuum) upon Tobacco mosaic virus (TMV) infection. CaWRKYa was involved in L-mediated resistance via transcriptional reprogramming of pathogenesis-related (PR) gene expression and affected HR upon TMV-P0 infection. CaWRKYa acts as a positive regulator of this defense system and could bind to the W-box of diverse PR genes promoters. Furthermore, we found Capsicum annuum mitogen-activated protein kinase 1 (CaMK1) and 2 (CaMK2) interacted with CaWRKYa and phosphorylated the SP clusters but not the MAPK docking (D)-domain of CaWRKYa. Thus, these results demonstrated that CaWRKYa was regulated by CaMK1 and CaMK2 at the posttranslational level in hot pepper.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Capsicum , Proteínas de Plantas , Vírus do Mosaico do Tabaco/metabolismo , Fatores de Transcrição , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Capsicum/genética , Capsicum/metabolismo , Capsicum/virologia , Doenças das Plantas/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Mol Plant Microbe Interact ; 15(10): 983-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12437295

RESUMO

In many plants, including hot pepper plants, productivity is greatly affected by pathogen attack. We reported previously that tobacco stress-induced gene 1 (Tsi1) may play an important role in regulating stress responsive genes and pathogenesis-related (PR) genes. In this study, we demonstrated that overexpression of Tsi1 gene in transgenic hot pepper plants induced constitutive expression of several PR genes in the absence of stress or pathogen treatment. The transgenic hot pepper plants expressing Tsi1 exhibited resistance to Pepper mild mottle virus (PMMV) and Cucumber mosaic virus (CMV). Furthermore, these transgenic plants showed increased resistance to a bacterial pathogen, Xanthomonas campestris pv. vesicatoria and also an oomycete pathogen, Phytophthora capsici. These results suggested that ectopic expression of Tsi1 in transgenic hot pepper plants enhanced the resistance of the plants to various pathogens, including viruses, bacteria, and oomycete. These results suggest that using transcriptional regulatory protein genes may contribute to developing broad-spectrum resistance in crop plants.


Assuntos
Capsicum/genética , Proteínas de Ligação a DNA/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Bactérias/crescimento & desenvolvimento , Capsicum/microbiologia , Capsicum/virologia , Cucumovirus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Oomicetos/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Xanthomonas campestris/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA