Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
EMBO Rep ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943004

RESUMO

Centrosomes are the canonical microtubule organizing centers (MTOCs) of most mammalian cells, including spermatocytes. Centrosomes comprise a centriole pair within a structurally ordered and dynamic pericentriolar matrix (PCM). Unlike in mitosis, where centrioles duplicate once per cycle, centrioles undergo two rounds of duplication during spermatogenesis. The first duplication is during early meiotic prophase I, and the second is during interkinesis. Using mouse mutants and chemical inhibition, we have blocked centriole duplication during spermatogenesis and determined that non-centrosomal MTOCs (ncMTOCs) can mediate chromosome segregation. This mechanism is different from the acentriolar MTOCs that form bipolar spindles in oocytes, which require PCM components, including gamma-tubulin and CEP192. From an in-depth analysis, we identified six microtubule-associated proteins, TPX2, KIF11, NuMA, and CAMSAP1-3, that localized to the non-centrosomal MTOC. These factors contribute to a mechanism that ensures bipolar MTOC formation and chromosome segregation during spermatogenesis when centriole duplication fails. However, despite the successful completion of meiosis and round spermatid formation, centriole inheritance and PLK4 function are required for normal spermiogenesis and flagella assembly, which are critical to ensure fertility.

2.
PLoS Genet ; 18(2): e1010040, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130272

RESUMO

During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals.


Assuntos
Pareamento Cromossômico/fisiologia , Cromossomos Sexuais/fisiologia , Telômero/fisiologia , Animais , Macropodidae/genética , Marsupiais/genética , Meiose/genética , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Gambás/genética , Cromossomos Sexuais/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética
3.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37183864

RESUMO

Chromosome-scale genome assemblies based on ultralong-read sequencing technologies are able to illuminate previously intractable aspects of genome biology such as fine-scale centromere structure and large-scale variation in genome features such as heterochromatin, GC content, recombination rate, and gene content. We present here a new chromosome-scale genome of the Mongolian gerbil (Meriones unguiculatus), which includes the complete sequence of all centromeres. Gerbils are thus the one of the first vertebrates to have their centromeres completely sequenced. Gerbil centromeres are composed of four different repeats of length 6, 37, 127, or 1,747 bp, which occur in simple alternating arrays and span 1-6 Mb. Gerbil genomes have both an extensive set of GC-rich genes and chromosomes strikingly enriched for constitutive heterochromatin. We sought to determine if there was a link between these two phenomena and found that the two heterochromatic chromosomes of the Mongolian gerbil have distinct underpinnings: Chromosome 5 has a large block of intraarm heterochromatin as the result of a massive expansion of centromeric repeats, while chromosome 13 is comprised of extremely large (>150 kb) repeated sequences. In addition to characterizing centromeres, our results demonstrate the importance of including karyotypic features such as chromosome number and the locations of centromeres in the interpretation of genome sequence data and highlight novel patterns involved in the evolution of chromosomes.


Assuntos
Centrômero , Heterocromatina , Animais , Gerbillinae/genética , Heterocromatina/genética , Centrômero/genética , Genoma , Sequências Repetitivas de Ácido Nucleico
4.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35694956

RESUMO

Chromosome segregation requires that centromeres properly attach to spindle microtubules. This essential step regulates the accuracy of cell division and must therefore be precisely regulated. One of the main centromeric regulatory signaling pathways is the haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. During mitosis, the haspin kinase phosphorylates histone H3 at threonine 3 (H3T3ph), an essential epigenetic mark that recruits the CPC, in which the catalytic component is Aurora B kinase (AURKB). However, the centromeric haspin-H3T3ph-CPC pathway remains largely uncharacterized in mammalian male meiosis. We have analyzed haspin functions by either its chemical inhibition with LDN-192960 in cultured spermatocytes, or the ablation of the Haspin gene in Haspin-/- mice. Our studies suggest that haspin kinase activity is required for proper chromosome congression both during meiotic divisions and for the recruitment of Aurora B and kinesin MCAK (also known as KIF2C) to meiotic centromeres. However, the absence of H3T3ph histone mark does not alter borealin (or CDCA8) and SGO2 centromeric localization. These results add new and relevant information regarding the regulation of the haspin-H3T3ph-CPC pathway and centromere function during meiosis.


Assuntos
Aurora Quinase B , Segregação de Cromossomos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Masculino , Mamíferos/metabolismo , Meiose/genética , Camundongos , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Treonina/metabolismo
5.
PLoS Genet ; 16(11): e1008959, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180767

RESUMO

Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in almost all mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed or largely reduced in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution.


Assuntos
Meiose/genética , Camundongos/genética , Diferenciação Sexual/genética , Animais , Eutérios/genética , Feminino , Masculino , Mamíferos/genética , Regiões Pseudoautossômicas , Cromossomos Sexuais/genética , Translocação Genética/genética , Cromossomo X/genética , Cromossomo Y/genética
6.
Chromosoma ; 130(2-3): 113-131, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33825031

RESUMO

Sex determination in mammals is usually provided by a pair of chromosomes, XX in females and XY in males. Mole voles of the genus Ellobius are exceptions to this rule. In Ellobius tancrei, both males and females have a pair of XX chromosomes that are indistinguishable from each other in somatic cells. Nevertheless, several studies on Ellobius have reported that the two X chromosomes may have a differential organization and behavior during male meiosis. It has not yet been demonstrated if these differences also appear in female meiosis. To test this hypothesis, we have performed a comparative study of chromosome synapsis, recombination, and histone modifications during male and female meiosis in E. tancrei. We observed that synapsis between the two X chromosomes is limited to the short distal (telomeric) regions of the chromosomes in males, leaving the central region completely unsynapsed. This uneven behavior of sex chromosomes during male meiosis is accompanied by structural modifications of one of the X chromosomes, whose axial element tends to appear fragmented, accumulates the heterochromatin mark H3K9me3, and is associated with a specific nuclear body that accumulates epigenetic marks and proteins such as SUMO-1 and centromeric proteins but excludes others such as H3K4me, ubiH2A, and γH2AX. Unexpectedly, sex chromosome synapsis is delayed in female meiosis, leaving the central region unsynapsed during early pachytene. This region accumulates γH2AX up to the stage in which synapsis is completed. However, there are no structural or epigenetic differences similar to those found in males in either of the two X chromosomes. Finally, we observed that recombination in the sex chromosomes is restricted in both sexes. In males, crossover-associated MLH1 foci are located exclusively in the distal regions, indicating incipient differentiation of one of the sex chromosomes into a neo-Y. Notably, in female meiosis, the central region of the X chromosome is also devoid of MLH1 foci, revealing a lack of recombination, possibly due to insufficient homology. Overall, these results reveal new clues about the origin and evolution of sex chromosomes.


Assuntos
Arvicolinae , Caracteres Sexuais , Animais , Arvicolinae/genética , Feminino , Masculino , Meiose , Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética
7.
PLoS Genet ; 15(1): e1007439, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668564

RESUMO

Homologous recombination (HR) is the principal mechanism of DNA repair acting during meiosis and is fundamental for the segregation of chromosomes and the increase of genetic diversity. Nevertheless, non-homologous end joining (NHEJ) mechanisms can also act during meiosis, mainly in response to exogenously-induced DNA damage in late stages of first meiotic prophase. In order to better understand the relationship between these two repair pathways, we studied the response to DNA damage during male mouse meiosis after gamma radiation. We clearly discerned two types of responses immediately after treatment. From leptotene to early pachytene, exogenous damage triggered the massive presence of γH2AX throughout the nucleus, which was associated with DNA repair mediated by HR components (DMC1 and RAD51). This early pathway finished with the sequential removal of DMC1 and RAD51 and was no longer inducible at mid pachytene. However, from mid-pachytene to diplotene, γH2AX appeared as large discrete foci. This late repair pattern was mediated initially by NHEJ, involving Ku70 and XRCC4, which were constitutively present, and 53BP1, which appeared at sites of damage soon after irradiation. Nevertheless, 24 hours after irradiation, a HR pathway involving RAD51 but not DMC1 mostly replaced NHEJ. Additionally, we observed the occurrence of synaptonemal complex bridges between bivalents, most likely representing chromosome translocation events that may involve DMC1, RAD51 or 53BP1. Our results reinforce the idea that the early "meiotic" repair pathway that acts by default at the beginning of meiosis is replaced from mid-pachytene onwards by a "somatic-like" repair pattern. This shift might be important to resolve DNA damage (either endogenous or exogenous) that could not be repaired by the early meiotic mechanisms, for instance those in the sex chromosomes, which lack a homologous chromosome to repair with. This transition represents another layer of functional changes that occur in meiotic cells during mid pachytene, in addition to epigenetic reprograming, reactivation of transcription, changes in the gene expression profile and acquisition of competence to proceed to metaphase.


Assuntos
Proteínas de Ciclo Celular/genética , Reparo do DNA por Junção de Extremidades/genética , Recombinação Homóloga/genética , Proteínas Nucleares/genética , Rad51 Recombinase/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Cromossomos/genética , Cromossomos/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Raios gama , Histonas/genética , Autoantígeno Ku/genética , Meiose/genética , Camundongos , Estágio Paquíteno/genética , Proteínas de Ligação a Fosfato , Complexo Sinaptonêmico/genética
8.
Chromosoma ; 128(2): 149-163, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826871

RESUMO

Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.


Assuntos
Pareamento Cromossômico , Meiose , Camundongos/genética , Translocação Genética , Animais , Feminino , Heterozigoto , Cariótipo , Masculino , Prófase Meiótica I , Espermatócitos/citologia
9.
Chromosoma ; 126(1): 179-194, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26899781

RESUMO

During meiosis, transcription is precisely regulated in relation to the process of chromosome synapsis. In mammals, transcription is very low until the completion of synapsis in early pachytene, and then reactivates during mid pachytene, up to the end of diplotene. Moreover, chromosomes or chromosomal regions that do not achieve synapsis undergo a specific process of inactivation called meiotic silencing of unpaired chromatin (MSUC). Sex chromosomes, which are mostly unsynapsed, present a special case of inactivation named meiotic sex chromosome inactivation (MSCI). Although processes that are similar to MSUC/MSCI have been described in other species like Sordaria and Caenorhabditis elegans, very few studies have been developed in insects. We present a study on the relationships between synapsis and transcription in two hemipteran species (Graphosoma italicum and Carpocoris fuscispinus) that possess holocentric chromosomes but develop different synaptic patterns. We have found that transcription, revealed by the presence of RNA polymerase II, is very low at the beginning of meiosis, but robustly increases during zygotene, long before the completion of synapsis, excepting in the sex chromosomes. In fact, we show that histone H3 methylation at lysine 9 (H3K9me3) may be present in the sex chromosomes at leptotene, thus acting as a likely epigenetic mark for this inactive state. Our results suggest that the meiotic transcription in these two species is differently regulated from that of mammals and, therefore, offer new opportunities to understand the relationship between synapsis and transcription and the mechanisms that govern MSUC/MSCI processes.


Assuntos
Pareamento Cromossômico , Heterópteros/genética , Meiose/genética , Prófase Meiótica I/genética , Ativação Transcricional , Animais , Masculino , Recombinação Genética , Espermatócitos/metabolismo
11.
Chromosoma ; 123(6): 529-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25053180

RESUMO

Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.


Assuntos
Centrômero/química , Especiação Genética , Meiose/genética , Camundongos/genética , Translocação Genética , Animais , Centrômero/ultraestrutura , Aberrações Cromossômicas , Segregação de Cromossomos , Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/ultraestrutura , Feminino , Fertilidade/genética , História do Século XX , Cariótipo , Masculino , Biologia Molecular/história
12.
Chromosome Res ; 22(4): 545-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25385393

RESUMO

Rb translocations are chromosomal rearrangements frequently found in natural populations of the house mouse Mus musculus domesticus. The standard diploid karyotype of the house mouse consisting of 40 telocentric chromosomes may be reduced by the emergence of metacentric Rb chromosomes. Multiple simple Rb heterozygotes form trivalents exhibiting higher anaphase nondisjunction frequency and consequently higher number of unbalanced gametes than in normal males. This work will attempt to establish whether frequencies of aneuploidy observed in heterozygote spermatids of the house mouse M. musculus domesticus show differences in chromosomes derived from different trivalents. Towards this goal, the number and distribution frequency of aneuploidy was assessed via FISH staining of specific chromosomes of spermatids derived from 2n = 32 individuals. Our results showed that for a given set of target chromosomes, 90% of the gametes were balanced, resulting from alternate segregation, and that there were no differences (approx. 10%) in aneuploidy frequencies in chromosomes derived from different trivalents. These observations suggest that segregation effectiveness does not depend on the type of chromosomes involved in trivalents. As a consequence of the trivalent's configuration, joint segregation of the telocentric chromosomes occurs thus favoring their appearance together in early spermatids. Our data suggest that Rb chromosomes and their telocentric homologs are subject to architectural constraints placing them close to each other. This proximity may ultimately facilitate fusion between them, hence contributing to a prevalence of Rb metacentric chromosomes.


Assuntos
Aneuploidia , Cromossomos/genética , Meiose/genética , Translocação Genética/genética , Animais , Heterozigoto , Cariotipagem , Masculino , Camundongos , Não Disjunção Genética , Espermátides/patologia
13.
Bull Math Biol ; 76(8): 1941-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25033783

RESUMO

The establishment of associations between bivalents from Mus domesticus 2n = 40 spermatocytes is a common phenomenon that shows up during the first prophase of meiotic nuclei. In each nucleus, a seemingly random display of variable size clusters of bivalents in association is observed. These associations originate a particular nuclear architecture and determine the probability of encounters between chromosome domains. Hence, the type of randomness in associations between bivalents has nontrivial consequences. We explore different models for randomness and the associated bivalent probability distributions and find that a simple model based on randomly coloring a subset of vertices of a 6-regular graph provides best agreement with microspreads observations. The notion of randomness is thereby explained in conjunction with the underlying local geometry of the nuclear envelope.


Assuntos
Cromossomos/fisiologia , Modelos Biológicos , Prófase/fisiologia , Espermatócitos/citologia , Algoritmos , Animais , Simulação por Computador , Masculino , Camundongos , Camundongos Endogâmicos C3H , Processos Estocásticos
14.
Biol Res ; 47: 16, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25027603

RESUMO

BACKGROUND: The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition. RESULTS: In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents. CONCLUSIONS: The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.


Assuntos
Núcleo Celular/genética , Cromossomos de Mamíferos/ultraestrutura , Prófase Meiótica I , Espermatócitos/ultraestrutura , Animais , Núcleo Celular/diagnóstico por imagem , Heterocromatina , Heterozigoto , Homozigoto , Hibridização in Situ Fluorescente , Masculino , Camundongos , Sondas Moleculares , Estágio Paquíteno , Frações Subcelulares , Ultrassonografia
15.
Chromosoma ; 121(3): 307-26, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22366883

RESUMO

During the first meiotic prophase in male mammals, sex chromosomes undergo a program of transcriptional silencing called meiotic sex chromosome inactivation (MSCI). MSCI is triggered by accumulation of proteins like BRCA1, ATR, and γH2AX on unsynapsed chromosomes, followed by local changes on the sex chromatin, including histone modifications, incorporation of specific histone variants, non-histone proteins, and RNAs. It is generally thought that MSCI represents the transition of unsynapsed chromatin from a transcriptionally active state to a repressed state. However, transcription is generally low in the whole nucleus during the early stages of the first meiotic prophase, when markers of MSCI first appear, and is then reactivated globally during pachytene. Thus, an alternative possibility is that MSCI represents the targeted maintenance and/or reinforcement of a prior repressed state, i.e., a failure to reactivate. Here, we present an analysis of the temporal and spatial appearance of transcriptional and MSCI markers, as well as chromatin modifications related to transcriptional regulation. We show that levels of RNA pol II and histone H3 acetylated at lysine 9 (H3K9ac) are low during leptotene, zygotene, and early pachytene, but increase strongly in mid-pachytene, indicating that reactivation occurs with some delay after synapsis. However, while transcription markers appear abundantly on the autosomes at mid-pachytene, they are not directed to the sex chromosomes. Interestingly, we found that chromatin modifications related to transcriptional silencing and/or MSCI, namely, histone H3 trimethylated at lysine 9 (H3K9me3), histone H3 monomethylated at lysine 4 (H3K4me1), γH2AX, SUMO1, and XMR, appear on the sex chromosomes before autosomes become reactivated. These results suggest that the onset of MSCI during late zygotene and early pachytene may prevent sex chromosome reactivation during mid-pachytene instead of promoting inactivation de novo. Additionally, we found temporal differences between the X and Y chromosomes in the recruitment of DNA repair and MSCI markers, indicating a differential regulation of these processes. We propose that many of the meiotic defects attributed to failure to silence sex chromosomes could be interpreted as a more general process of transcriptional misregulation that occurs under certain pathological circumstances in zygotene and early pachytene.


Assuntos
Inativação Gênica , Prófase Meiótica I/genética , Cromossomo X/metabolismo , Cromossomo Y/metabolismo , Animais , Proteínas de Transporte , Proteínas de Ciclo Celular , Cromatina/metabolismo , Pareamento Cromossômico/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA , Histonas/metabolismo , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Estágio Paquíteno/fisiologia , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA , Proteína SUMO-1/metabolismo , Transcrição Gênica
16.
Chromosoma ; 121(5): 433-46, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22552439

RESUMO

Synapsis and reciprocal recombination between sex chromosomes are restricted to the pseudoautosomal region. In some animal species, sex chromosomes do not present this region, although they utilize alternative mechanisms that ensure meiotic pairing and segregation. The subfamily Arvicolinae (Rodentia, Cricetidae) includes numerous species with achiasmate sex chromosomes. In order to know whether the mechanism involved in achiasmate segregation is an ancient feature in arvicolid species, we have compared the sex chromosomes of both the Mediterranean vole (Microtus duodecimcostatus) and the water vole (Arvicola terrestris). By means of immunofluorescence, we have found that sex chromosomes in M. duodecimcostatus are asynaptic and develop a synaptonemal complex-derived structure that mediates pairing and facilitates segregation. In A. terrestris, sex chromosomes are synaptic and chiasmate but also exhibit a synaptonemal complex-derived filament during anaphase I. Since phylogenetic relationships indicate that the synaptic condition is ancestral in arvicolids, this finding indicates that the mechanism for achiasmate sex chromosome segregation precedes the switching to the asynaptic condition. We discuss the origin of this synaptonemal complex-derived mechanism that, in turn, could counterbalance the disruption of homology in the sex chromosomes of those species.


Assuntos
Cromossomos de Mamíferos/genética , Evolução Molecular , Meiose , Roedores/genética , Cromossomos Sexuais/genética , Complexo Sinaptonêmico/metabolismo , Animais , Segregação de Cromossomos , Cromossomos de Mamíferos/metabolismo , Humanos , Masculino , Mamíferos/genética , Mamíferos/metabolismo , Roedores/metabolismo , Cromossomos Sexuais/metabolismo , Complexo Sinaptonêmico/genética
17.
Chromosome Res ; 20(2): 269-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22231503

RESUMO

The house mouse is characterised by highly variable chromosome number due to the presence of Robertsonian (Rb) chromosomes. During meiosis in Rb heterozygotes, intricated chromosomal figures are produced, and many unsynapsed regions are present during the first prophase, triggering a meiotic silencing of unsynapsed chromatin (MSUC) in a similar mode to the sex chromosome inactivation. The presence of unsynapsed chromosome regions is associated with impaired spermatogenesis. Interestingly, in male mice carrying multiple Rb trivalents, the frequency of germ cell death, defective tubules, and altered sperm morphology decreases during aging. Here, we studied whether synapsis of trivalent chromosomes and MSUC are involved in this improvement. By immunocytochemistry, we analysed the frequency of unsynapsed chromosomes and of those positive to γH2AX (a marker of MSUC) labelling in spermatocytes of 3-, 5- and 7-month-old Rb heterozygotes. With aging, we observed a decrease of the frequency of unsynapsed chromosomes, of spermatocytes bearing them and of trivalents carrying γH2AX-negative unsynapsed regions. Our quantitative results show that both synapsis and MSUC processes are better accomplished during male aging, partially accounting for the improvement of spermatogenesis.


Assuntos
Envelhecimento/genética , Pareamento Cromossômico , Heterozigoto , Translocação Genética , Animais , Masculino , Camundongos , Cromossomos Sexuais , Espermatócitos/metabolismo
18.
Elife ; 122023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650378

RESUMO

The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.


Assuntos
Caenorhabditis elegans , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Animais , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Cromátides , Proteínas Cromossômicas não Histona/genética , Coesinas
19.
Front Cell Dev Biol ; 11: 1147610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181752

RESUMO

In eutherian mammals, hundreds of programmed DNA double-strand breaks (DSBs) are generated at the onset of meiosis. The DNA damage response is then triggered. Although the dynamics of this response is well studied in eutherian mammals, recent findings have revealed different patterns of DNA damage signaling and repair in marsupial mammals. To better characterize these differences, here we analyzed synapsis and the chromosomal distribution of meiotic DSBs markers in three different marsupial species (Thylamys elegans, Dromiciops gliorides, and Macropus eugenii) that represent South American and Australian Orders. Our results revealed inter-specific differences in the chromosomal distribution of DNA damage and repair proteins, which were associated with differing synapsis patterns. In the American species T. elegans and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet configuration and synapsis progressed exclusively from the telomeres towards interstitial regions. This was accompanied by sparse H2AX phosphorylation, mainly accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly localized at chromosomal ends throughout prophase I in both American marsupials, likely resulting in reduced recombination rates at interstitial positions. In sharp contrast, synapsis initiated at both interstitial and distal chromosomal regions in the Australian representative M. eugenii, the bouquet polarization was incomplete and ephemeral, γH2AX had a broad nuclear distribution, and RAD51 and RPA foci displayed an even chromosomal distribution. Given the basal evolutionary position of T. elegans, it is likely that the meiotic features reported in this species represent an ancestral pattern in marsupials and that a shift in the meiotic program occurred after the split of D. gliroides and the Australian marsupial clade. Our results open intriguing questions about the regulation and homeostasis of meiotic DSBs in marsupials. The low recombination rates observed at the interstitial chromosomal regions in American marsupials can result in the formation of large linkage groups, thus having an impact in the evolution of their genomes.

20.
PLoS Genet ; 5(8): e1000625, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19714216

RESUMO

Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., gammaH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse.


Assuntos
Cromatina/metabolismo , Pareamento Cromossômico , Inativação Gênica , Meiose , Espermatócitos/citologia , Translocação Genética , Animais , Feminino , Heterozigoto , Masculino , Camundongos , Estágio Paquíteno , Espermatócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA