Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 610(7931): 356-365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198802

RESUMO

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células Estreladas do Fígado , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/patologia
2.
Gastroenterology ; 164(3): 439-453, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36402191

RESUMO

BACKGROUND & AIMS: Obesity predisposes to type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD), but underlying mechanisms are incompletely understood. Potassium channel tetramerization domain-containing protein 17 (Kctd17) levels are increased in livers from obese mice and humans. In this study, we investigated the mechanism of increased Kctd17 and whether it is causal to obesity-induced metabolic complications. METHODS: We transduced Rosa26-LSL-Cas9 knockin mice with AAV8-TBG-Cre (Control), AAV8-U6-Kctd17 sgRNA-TBG-Cre (L-Kctd17), AAV8-U6-Oga sgRNA-TBG-Cre (L-Oga), or AAV8-U6-Kctd17/Oga sgRNA-TBG-Cre (DKO). We fed mice a high-fat diet (HFD) and assessed for hepatic glucose and lipid homeostasis. We generated Kctd17, O-GlcNAcase (Oga), or Kctd17/Oga-knockout hepatoma cells by CRISPR-Cas9, and Kctd17-directed antisense oligonucleotide to test therapeutic potential in vivo. We analyzed transcriptomic data from patients with NAFLD. RESULTS: Hepatocyte Kctd17 expression was increased in HFD-fed mice due to increased Srebp1c activity. HFD-fed L-Kctd17 or Kctd17 antisense oligonucleotide-treated mice show improved glucose tolerance and hepatic steatosis, whereas forced Kctd17 expression caused glucose intolerance and hepatic steatosis even in lean mice. Kctd17 induced Oga degradation, resulting in increasing carbohydrate response element-binding protein (Chrebp) protein, so concomitant Oga knockout negated metabolic benefits of hepatocyte Kctd17 deletion. In patients with NAFLD, KCTD17 messenger RNA was positively correlated with expression of Chrebp target and other lipogenic genes. CONCLUSIONS: Srebp1c-induced hepatocyte Kctd17 expression in obesity disrupted glucose and lipid metabolism by stabilizing Chrebp, and may represent a novel therapeutic target for obesity-induced T2D and NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Resistência à Insulina/fisiologia , Fatores de Transcrição/genética , Fígado/metabolismo , Hepatócitos/metabolismo , Obesidade/complicações , Glucose/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Liver Int ; 44(7): 1526-1536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578141

RESUMO

The rising prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) poses a significant global health challenge, affecting over 30% of adults worldwide. MASLD is linked to increased mortality rates and substantial healthcare costs, primarily driven by its progression to metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver complications including cirrhosis and hepatocellular carcinoma. Despite its growing burden, effective pharmacotherapy for MASLD/MASH has been lacking until the recent conditional approval of resmetirom by the FDA. Resmetirom, a liver-targeted thyroid hormone receptor-ß selective drug, has shown promise in clinical trials for treating non-cirrhotic MASH with moderate to advanced fibrosis. It has demonstrated efficacy in reducing hepatic fat content, improving liver histology (both MASH resolution and fibrosis improvement), and ameliorating biomarkers of liver damage without significant effects on body weight or glucose metabolism. Notably, resmetirom also exhibits favourable effects on circulating lipids, potentially reducing cardiovascular risk in MASLD/MASH patients. The safety profile of resmetirom appears acceptable, with gastrointestinal adverse events being the most common, though generally mild or moderate. However, long-term surveillance is warranted to monitor for potential risks related to thyroid, gonadal, or bone diseases. Clinical implementation of resmetirom faces challenges in patient selection and monitoring treatment response, and will heavily rely on non-invasive tests for liver fibrosis assessment. Nonetheless, resmetirom represents a landmark breakthrough in MASLD/MASH treatment, paving the way for future therapeutic strategies aiming to mitigate the multifaceted risks associated with this complex metabolic liver disease.


Assuntos
Fígado Gorduroso , Humanos , Fígado Gorduroso/tratamento farmacológico , Receptores beta dos Hormônios Tireóideos/metabolismo , Cirrose Hepática/tratamento farmacológico , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Piridazinas , Uracila/análogos & derivados
4.
J Hepatol ; 76(4): 910-920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34902531

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a leading cause of hepatocellular carcinoma (HCC), but mechanisms linking NASH to eventual tumor formation remain poorly understood. Herein, we investigate the role of TAZ/WWTR1, which is induced in hepatocytes in NASH, in the progression of NASH to HCC. METHODS: The roles of hepatocyte TAZ and its downstream targets were investigated in diet-induced and genetic models of NASH-HCC using gene-targeting, adeno-associated virus 8 (AAV8)-H1-mediated gene silencing, or AAV8-TBG-mediated gene expression. The biochemical signature of the newly elucidated pathway was probed in liver specimens from humans with NASH-HCC. RESULTS: When hepatocyte-TAZ was silenced in mice with pre-tumor NASH using AAV8-H1-shTaz (short-hairpin Taz), subsequent HCC tumor development was suppressed. In this setting, the tumor-suppressing effect of shTaz was not dependent of TAZ silencing in the tumors themselves and could be dissociated from the NASH-suppressing effects of shTaz. The mechanism linking pre-tumor hepatocyte-TAZ to eventual tumor formation involved TAZ-mediated induction of the NOX2-encoding gene Cybb, which led to NADPH-mediated oxidative DNA damage. As evidence, DNA damage and tumor formation could be suppressed by treatment of pre-tumor NASH mice with AAV8-H1-shCybb; AAV8-TBG-OGG1, encoding the oxidative DNA-repair enzyme 8-oxoguanine glycosylase; or AAV8-TBG-NHEJ1, encoding the dsDNA repair enzyme non-homologous end-joining factor 1. In surrounding non-tumor tissue from human NASH-HCC livers, there were strong correlations between TAZ, NOX2, and oxidative DNA damage. CONCLUSIONS: TAZ in pre-tumor NASH-hepatocytes, via induction of Cybb and NOX2-mediated DNA damage, contributes to subsequent HCC tumor development. These findings illustrate how NASH provides a unique window into the early molecular events that can lead to tumor formation and suggest that NASH therapies targeting TAZ might also prevent NASH-HCC. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is emerging as the leading cause of a type of liver cancer called hepatocellular carcinoma (HCC), but molecular events in pre-tumor NASH hepatocytes leading to HCC remain largely unknown. Our study shows that a protein called TAZ in pre-tumor NASH-hepatocytes promotes damage to the DNA of hepatocytes and thereby contributes to eventual HCC. This study reveals a very early event in HCC that is induced in pre-tumor NASH, and the findings suggest that NASH therapies targeting TAZ might also prevent NASH-HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Neoplasias Hepáticas , NADPH Oxidase 2 , Hepatopatia Gordurosa não Alcoólica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
J Hepatol ; 74(3): 613-626, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33038431

RESUMO

BACKGROUND & AIMS: The hepatocyte Notch pathway is a pathogenic factor in non-alcoholic steatohepatitis (NASH)-associated fibrosis, but its role in hepatocellular carcinoma (HCC) is less well defined. Herein, we aimed to characterize the molecular and clinical features of Notch-active human HCC, and to investigate the mechanisms by which Notch affects NASH-driven HCC. METHODS: Using a 14-gene Notch score, we stratified human HCCs from multiple comprehensively profiled datasets. We performed gene set enrichment analyses to compare Notch-active HCCs with published HCC subtype signatures. Next, we sorted Notch-active hepatocytes from Notch reporter mice for RNA sequencing and characterized Notch-active tumors in an HCC model combining a carcinogen and a NASH-inducing diet. We used genetic mouse models to manipulate hepatocyte Notch to investigate the sufficiency and necessity of Notch in NASH-driven tumorigenesis. RESULTS: Notch-active signatures were found in ~30% of human HCCs that transcriptionally resemble cholangiocarcinoma-like HCC, exhibiting a lack of activating CTNNB1 (ß-catenin) mutations and a generally poor prognosis. Endogenous Notch activation in hepatocytes is associated with repressed ß-catenin signaling and hepatic metabolic functions, in lieu of increased interactions with the extracellular matrix in NASH. Constitutive hepatocyte Notch activation is sufficient to induce ß-catenin-inactive HCC in mice with NASH. Notch and ß-catenin show a pattern of mutual exclusivity in carcinogen-induced HCC; in this mouse model, chronic blockade of Notch led to ß-catenin-dependent tumor development. CONCLUSIONS: Notch activity characterizes a distinct HCC molecular subtype with unique histology and prognosis. Sustained Notch signaling in chronic liver diseases can drive tumor formation without acquiring specific genomic driver mutations. LAY SUMMARY: The Notch signaling pathway is known to be involved in the pathogenesis of liver fibrosis. However, its role in liver cancer has not been well defined. Herein, we show that Notch activity is increased in a subset of liver cancers and is associated with poor outcomes. We also used a mouse model to show that aberrant Notch activity can drive cancer progression in obese mice.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Receptores Notch/genética , Via de Sinalização Wnt/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Feminino , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Prognóstico , Receptores Notch/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Gastroenterology ; 158(7): 1913-1928, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32044315

RESUMO

Nonalcoholic fatty liver disease is the most prevalent liver disease worldwide, affecting 20%-25% of the adult population. In 25% of patients, nonalcoholic fatty liver disease progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of cirrhosis, liver failure, and hepatocellular carcinoma. In patients with NASH, liver fibrosis is the main determinant of mortality. Here, we review how interactions between different liver cells culminate in fibrosis development in NASH, focusing on triggers and consequences of hepatocyte-macrophage-hepatic stellate cell (HSC) crosstalk. We discuss pathways through which stressed and dead hepatocytes instigate the profibrogenic crosstalk with HSC and macrophages, including the reactivation of developmental pathways such as TAZ, Notch, and hedgehog; how clearance of dead cells in NASH via efferocytosis may affect inflammation and fibrogenesis; and insights into HSC and macrophage heterogeneity revealed by single-cell RNA sequencing. Finally, we summarize options to therapeutically interrupt this profibrogenic hepatocyte-macrophage-HSC network in NASH.


Assuntos
Matriz Extracelular/metabolismo , Cirrose Hepática/etiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Comunicação Celular , Morte Celular , Matriz Extracelular/patologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais
7.
Liver Int ; 41(11): 2534-2546, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328687

RESUMO

Non-alcoholic fatty liver disease (NAFLD) exists as a spectrum ranging from simple steatosis to histologically defined hepatocyte injury and inflammatory changes that define steatohepatitis (NASH), and increase risk for fibrosis. Although zonal differences in NASH have not been systematically studied, periportal involvement has been associated with worse metabolic outcomes and more hepatic fibrosis as compared to pericentral disease. These data suggest that hepatic zonation of disease may influence the diversity of clinical presentations. Similarly, several randomized clinical trials suggest a differential response based on zonation of disease, with preferential effects on periportal (cysteamine) or pericentral disease (obeticholic acid, pioglitazone). Intriguingly, morphogenic pathways known to affect zonal development and maintenance - WNT/ß-Catenin, Hedgehog, HIPPO/Yap/TAZ and Notch - have been implicated in NASH pathogenesis, and nuclear hormone receptors downstream of potential NASH therapeutics show zonal preferences. In this review, we summarize these data and propose that patient-specific activation of these pathways may explain the variability in clinical presentation, and the zone-specific response observed in clinical trials.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Hepatócitos , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Pioglitazona
8.
J Hepatol ; 73(2): 361-370, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32135178

RESUMO

BACKGROUND & AIMS: Obesity is a well-established risk factor for type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH), but the underlying mechanisms remain incompletely understood. Herein, we aimed to identify novel pathogenic factors (and possible therapeutic targets) underlying metabolic dysfunction in the liver. METHODS: We applied a tandem quantitative proteomics strategy to enrich and identify transcription factors (TFs) induced in the obese liver. We used flow cytometry of liver cells to analyze the source of the induced TFs. We employed conditional knockout mice, shRNA, and small-molecule inhibitors to test the metabolic consequences of the induction of identified TFs. Finally, we validated mouse data in patient liver biopsies. RESULTS: We identified PU.1/SPI1, the master hematopoietic regulator, as one of the most upregulated TFs in livers from diet-induced obese (DIO) and genetically obese (db/db) mice. Targeting PU.1 in the whole liver, but not hepatocytes alone, significantly improved glucose homeostasis and suppressed liver inflammation. Consistently, treatment with the PU.1 inhibitor DB1976 markedly reduced inflammation and improved glucose homeostasis and dyslipidemia in DIO mice, and strongly suppressed glucose intolerance, liver steatosis, inflammation, and fibrosis in a dietary NASH mouse model. Furthermore, hepatic PU.1 expression was positively correlated with insulin resistance and inflammation in liver biopsies from patients. CONCLUSIONS: These data suggest that the elevated hematopoietic factor PU.1 promotes liver metabolic dysfunction, and may be a useful therapeutic target for obesity, insulin resistance/T2D, and NASH. LAY SUMMARY: Expression of the immune regulator PU.1 is increased in livers of obese mice and people. Blocking PU.1 improved glucose homeostasis, and reduced liver steatosis, inflammation and fibrosis in mouse models of non-alcoholic steatohepatitis. Inhibition of PU.1 is thus a potential therapeutic strategy for treating obesity-associated liver dysfunction and metabolic diseases.


Assuntos
Camundongos Obesos/metabolismo , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas , Transativadores , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Regulação para Cima
9.
Biochem Biophys Res Commun ; 527(4): 979-984, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439159

RESUMO

Hepatic γ-secretase regulates low-density lipoprotein receptor (LDLR) cleavage and degradation, affecting clearance of plasma triglyceride (TG)-rich lipoproteins (TRLs). In this study, we investigated whether γ-secretase inhibition modulates risk of Western (high-fat/sucrose and high-cholesterol)-type diet (WTD)-induced hepatic steatosis, dyslipidemia and atherosclerosis. We evaluated liver and plasma lipids in WTD-fed mice with hepatocyte-specific ablation of the non-redundant γ-secretase-targeting subunit Nicastrin (L-Ncst). In parallel, we investigated the effect of liver-selective Ncst antisense oligonucleotides (ASO) on lipid metabolism and atherosclerosis in wildtype (WT) and ApoE knockout (ApoE-/-) mice fed normal chow or WTD. WTD-fed L-Ncst and Ncst ASO-treated WT mice showed reduced total cholesterol and LDL-cholesterol (LDL-C), as well as reduced hepatic lipid content as compared to Cre- and control ASO-treated WT mice. Treatment of WTD-fed ApoE-/- mice with Ncst ASO markedly lowered total and LDL cholesterol, hepatic TG and attenuated atherosclerotic lesions in the aorta, as compared to control ASO-treated mice. L-Ncst and Ncst ASO similarly showed reduced plasma glucose as compared to control mice. In conclusion, inhibition of hepatic γ-secretase reduces plasma glucose, and attenuates WTD-induced dyslipidemia, hepatic fat accumulation and atherosclerosis, suggesting potential pleiotropic application for diet-induced metabolic dysfunction.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Aterosclerose/terapia , Dislipidemias/terapia , Fígado Gorduroso/terapia , Glicoproteínas de Membrana/genética , Oligonucleotídeos Antissenso/uso terapêutico , Animais , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/genética , Dieta Ocidental/efeitos adversos , Dislipidemias/sangue , Dislipidemias/etiologia , Dislipidemias/genética , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Técnicas de Inativação de Genes , Terapia Genética , Lipídeos/análise , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Gastroenterology ; 153(6): 1568-1580.e10, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28859855

RESUMO

BACKGROUND & AIMS: Obesity-induced nonalcoholic fatty liver disease (NAFLD) develops, in part, via excess insulin-stimulated hepatic de novo lipogenesis, which increases, paradoxically, in patients with obesity-induced insulin resistance. Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) terminates insulin signaling by dephosphorylating Akt; levels of PHLPP2 are reduced in livers from obese mice. We investigated whether loss of hepatic PHLPP2 is sufficient to induce fatty liver in mice, mechanisms of PHLPP2 degradation in fatty liver, and expression of genes that regulate PHLPP2 in livers of patients with NAFLD. METHODS: C57BL/6J mice (controls), obese db/db mice, and mice with liver-specific deletion of PHLPP2 (L-PHLPP2) fed either normal chow or high-fat diet (HFD) were analyzed for metabolic phenotypes, including glucose tolerance and hepatic steatosis. PHLPP2-deficient primary hepatocytes or CRISPR/Cas9-mediated PHLPP2-knockout hepatoma cells were analyzed for insulin signaling and gene expression. We performed mass spectrometry analyses of liver tissues from C57BL/6J mice transduced with Ad-HA-Flag-PHLPP2 to identify posttranslational modifications to PHLPP2 and proteins that interact with PHLPP2. We measured levels of mRNAs by quantitative reverse transcription polymerase chain reaction in liver biopsies from patients with varying degrees of hepatic steatosis. RESULTS: PHLPP2-knockout hepatoma cells and hepatocytes from L-PHLPP2 mice showed normal initiation of insulin signaling, but prolonged insulin action. Chow-fed L-PHLPP2 mice had normal glucose tolerance but hepatic steatosis. In HFD-fed C57BL/6J or db/db obese mice, endogenous PHLPP2 was degraded by glucagon and PKA-dependent phosphorylation of PHLPP2 (at Ser1119 and Ser1210), which led to PHLPP2 binding to potassium channel tetramerization domain containing 17 (KCTD17), a substrate-adaptor for Cul3-RING ubiquitin ligases. Levels of KCTD17 mRNA were increased in livers of HFD-fed C57BL/6J or db/db obese mice and in liver biopsies patients with NAFLD, compared with liver tissues from healthy control mice or patients without steatosis. Knockdown of KCTD17 with small hairpin RNA in primary hepatocytes increased PHLPP2 protein but not Phlpp2 mRNA, indicating that KCTD17 mediates PHLPP2 degradation. KCTD17 knockdown in obese mice prevented PHLPP2 degradation and decreased expression of lipogenic genes. CONCLUSIONS: In mouse models of obesity, we found that PHLPP2 degradation induced lipogenesis without affecting gluconeogenesis. KCTD17, which is up-regulated in liver tissues of obese mice and patients with NAFLD, binds to phosphorylated PHLPP2 to target it for ubiquitin-mediated degradation; this increases expression of genes that regulate lipogenesis to promote hepatic steatosis. Inhibitors of this pathway might be developed for treatment of patients with NAFLD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glucagon/metabolismo , Lipogênese , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Fosfoproteínas Fosfatases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus/enzimologia , Diabetes Mellitus/genética , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Células Hep G2 , Humanos , Lipogênese/genética , Fígado/patologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/enzimologia , Obesidade/genética , Obesidade/patologia , Fenótipo , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteólise , Transdução de Sinais
12.
Diabetologia ; 58(11): 2459-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26248647

RESUMO

Until recently, type 2 diabetes was seen as a disease caused by an impaired ability of insulin to promote the uptake and utilisation of glucose. Work on forkhead box protein O (FOXO) transcription factors revealed new aspects of insulin action that have led us to articulate a liver- and beta cell-centric narrative of diabetes pathophysiology and treatment. FOXO integrate a surprisingly diverse subset of biological functions to promote metabolic flexibility. In the liver, they controls the glucokinase/glucose-6-phosphatase switch and bile acid pool composition, directing carbons to glucose or lipid utilisation, thus providing a unifying mechanism for the two abnormalities of the diabetic liver: excessive glucose production and increased lipid synthesis and secretion. Moreover, FOXO are necessary to maintain beta cell differentiation, and diabetes development is associated with a gradual loss of FOXO function that brings about beta cell dedifferentiation. We proposed that dedifferentiation is the main cause of beta cell failure and conversion into non-beta endocrine cells, and that treatment should restore beta cell differentiation. Our studies investigating these proposals have revealed new dimensions to the pathophysiology of diabetes that can be leveraged to design new therapies.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Animais , Glucose-6-Fosfatase/metabolismo , Humanos
13.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557494

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects nearly 40% of the global adult population and may progress to metabolic dysfunction-associated steatohepatitis (MASH), and MASH-associated liver fibrosis and cirrhosis. Despite numerous studies unraveling the mechanism of hepatic fibrogenesis, there are still no approved antifibrotic therapies. The development of MASLD and liver fibrosis results from complex cell-cell interactions that often initiate within hepatocytes but remain incompletely understood. In this issue of the JCI, Yan and colleagues describe an ATF3/HES1/CEBPA/OPN pathway that links hepatocyte signals to fibrogenic activation of hepatic stellate cells and may provide new perspectives on therapeutic options for MASLD-induced liver fibrosis.


Assuntos
Fígado Gorduroso , Cirrose Hepática , Adulto , Humanos , Hepatócitos , Células Estreladas do Fígado , Comunicação Celular
14.
Mol Metab ; 81: 101894, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311286

RESUMO

OBJECTIVE: Notch signaling, re-activated in ß cells from obese mice and causal to ß cell dysfunction, is determined in part by transmembrane ligand availability in a neighboring cell. We hypothesized that ß cell expression of Jagged1 determines the maladaptive Notch response and resultant insulin secretory defects in obese mice. METHODS: We assessed expression of Notch pathway components in high-fat diet-fed (HFD) or leptin receptor-deficient (db/db) mice, and performed single-cell RNA sequencing (scRNA-Seq) in islets from patients with and without type 2 diabetes (T2D). We generated and performed glucose tolerance testing in inducible, ß cell-specific Jagged1 gain-of- and loss-of-function mice. We also tested effects of monoclonal neutralizing antibodies to Jagged1 in glucose-stimulated insulin secretion (GSIS) assays in isolated islets. RESULTS: Jag1 was the only Notch ligand that tracked with increased Notch activity in HFD-fed and db/db mice, as well as in metabolically-inflexible ß cells enriched in patients with T2D. Neutralizing antibodies to block Jagged1 in islets isolated from HFD-fed and db/db mice potentiated GSIS ex vivo. To demonstrate if ß cell Jagged1 is sufficient to cause glucose tolerance in vivo, we generated inducible ß cell-specific Jag1 transgenic (ß-Jag1TG) and loss-of-function (iß-Jag1KO) mice. While forced Jagged1 impaired glucose intolerance due to reduced GSIS, loss of ß cell Jagged1 did not protect against HFD-induced insulin secretory defects. CONCLUSIONS: Jagged1 is increased in islets from obese mice and in patients with T2D, and neutralizing Jagged1 antibodies lead to improved GSIS, suggesting that inhibition of Jagged1-Notch signaling may have therapeutic benefit. However, genetic loss-of-function experiments suggest that ß cells are not a likely source of the Jagged1 signal.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Insulina/metabolismo , Ligantes , Camundongos Obesos
15.
Nat Metab ; 5(7): 1101-1110, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37460842

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly prevalent fellow traveller with the insulin resistance that underlies type 2 diabetes mellitus. However, the mechanistic connection between MAFLD and impaired insulin action remains unclear. In this Perspective, we review data from humans to elucidate insulin's aetiological role in MAFLD. We focus particularly on the relative preservation of insulin's stimulation of triglyceride (TG) biosynthesis despite its waning ability to curb hepatic glucose production (HGP). To explain this apparent 'selective insulin resistance', we propose that hepatocellular processes that lead to TG accumulation require less insulin signal transduction, or 'insulinization,' than do those that regulate HGP. As such, mounting hyperinsulinaemia that barely compensates for aberrant HGP in insulin-resistant states more than suffices to maintain hepatic TG biosynthesis. Thus, even modestly elevated or context-inappropriate insulin levels, when sustained day and night within a heavily pro-lipogenic metabolic milieu, may translate into substantial cumulative TG biosynthesis in the insulin-resistant state.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Triglicerídeos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Fígado/metabolismo
16.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752206

RESUMO

Patients with nonalcoholic steatohepatitis (NASH) have increased expression of liver monocyte chemoattractant protein-1 (MCP-1), but its cellular source and contribution to various aspects of NASH pathophysiology remain debated. We demonstrated increased liver CCL2 (which encodes MCP-1) expression in patients with NASH, and commensurately, a 100-fold increase in hepatocyte Ccl2 expression in a mouse model of NASH, accompanied by increased liver monocyte-derived macrophage (MoMF) infiltrate and liver fibrosis. To test repercussions of increased hepatocyte-derived MCP-1, we generated hepatocyte-specific Ccl2-knockout mice, which showed reduced liver MoMF infiltrate as well as decreased liver fibrosis. Forced hepatocyte MCP-1 expression provoked the opposite phenotype in chow-fed wild-type mice. Consistent with increased hepatocyte Notch signaling in NASH, we observed a close correlation between markers of Notch activation and CCL2 expression in patients with NASH. We found that an evolutionarily conserved Notch/recombination signal binding protein for immunoglobulin kappa J region binding site in the Ccl2 promoter mediated transactivation of the Ccl2 promoter in NASH diet-fed mice. Increased liver MoMF infiltrate and liver fibrosis seen in opposite gain-of-function mice was ameliorated with concomitant hepatocyte Ccl2 knockout or CCR2 inhibitor treatment. Hepatocyte Notch activation prompts MCP-1-dependent increase in liver MoMF infiltration and fibrosis.


Assuntos
Quimiocina CCL2 , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Quimiocina CCL2/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
17.
Nat Med ; 11(7): 797-803, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15965483

RESUMO

We describe the generation and characterization of the first inducible 'fatless' model system, the FAT-ATTAC mouse (fat apoptosis through targeted activation of caspase 8). This transgenic mouse develops identically to wild-type littermates. Apoptosis of adipocytes can be induced at any developmental stage by administration of a FK1012 analog leading to the dimerization of a membrane-bound, adipocyte-specific caspase 8-FKBP fusion protein. Within 2 weeks of dimerizer administration, FAT-ATTAC mice show near-knockout levels of circulating adipokines and markedly reduced levels of adipose tissue. FAT-ATTAC mice are glucose intolerant, have diminished basal and endotoxin-stimulated systemic inflammation, are less responsive to glucose-stimulated insulin secretion and show increased food intake independent of the effects of leptin. Most importantly, we show that functional adipocytes can be recovered upon cessation of treatment, allowing the study of adipogenesis in vivo, as well as a detailed examination of the importance of the adipocyte in the regulation of multiple physiological functions and pathological states.


Assuntos
Tecido Adiposo/patologia , Apoptose/fisiologia , Caspases/metabolismo , Lipodistrofia/metabolismo , Tacrolimo/análogos & derivados , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Tecido Adiposo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 8 , Caspases/genética , Dimerização , Ingestão de Alimentos , Ativação Enzimática , Intolerância à Glucose/genética , Inflamação/genética , Insulina/metabolismo , Secreção de Insulina , Leptina/deficiência , Leptina/genética , Leptina/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
18.
Med Rev (Berl) ; 2(6): 544-546, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37724256

RESUMO

Non-alcoholic steatohepatitis (NASH) with metabolic syndrome is increasing to be a main cause of hepatocellular carcinoma (HCC). However, the mechanism of tumorigenesis in NASH induced HCC is still not clear. In this perspective, we will discuss the recent progress that has been made to understand the genetic change and the immune microenvironment of HCC, and the remaining questions. Based on the current study, NASH-HCC is likely to have novel mechanism, which needs more investigation in future.

19.
Biomolecules ; 12(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35454124

RESUMO

ß-cells are insulin-producing cells in the pancreas that maintain euglycemic conditions. Pancreatic ß-cell maturity and function are regulated by a variety of transcription factors that enable the adequate expression of the cellular machinery involved in nutrient sensing and commensurate insulin secretion. One of the key factors in this regulation is MAF bZIP transcription factor A (MafA). MafA expression is decreased in type 2 diabetes, contributing to ß-cell dysfunction and disease progression. The molecular biology underlying MafA is complex, with numerous transcriptional and post-translational regulatory nodes. Understanding these complexities may uncover potential therapeutic targets to ameliorate ß-cell dysfunction. This article will summarize the role of MafA in normal ß-cell function and disease, with a special focus on known transcriptional and post-translational regulators of MafA expression.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo
20.
Life Metab ; 1(3): 258-269, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37213714

RESUMO

Obesity is characterized by chronic, low-grade inflammation, which is driven by macrophage infiltration of adipose tissue. PPARγ is well established to have an anti-inflammatory function in macrophages, but the mechanism that regulates its function in these cells remains to be fully elucidated. PPARγ undergoes post-translational modifications (PTMs), including acetylation, to mediate ligand responses, including on metabolic functions. Here, we report that PPARγ acetylation in macrophages promotes their infiltration into adipose tissue, exacerbating metabolic dysregulation. We generated a mouse line that expresses a macrophage-specific, constitutive acetylation-mimetic form of PPARγ (K293Qflox/flox:LysM-cre, mK293Q) to dissect the role of PPARγ acetylation in macrophages. Upon high-fat diet feeding to stimulate macrophage infiltration into adipose tissue, we assessed the overall metabolic profile and tissue-specific phenotype of the mutant mice, including responses to the PPARγ agonist Rosiglitazone. Macrophage-specific PPARγ K293Q expression promotes proinflammatory macrophage infiltration and fibrosis in epididymal white adipose tissue, but not in subcutaneous or brown adipose tissue, leading to decreased energy expenditure, insulin sensitivity, glucose tolerance, and adipose tissue function. Furthermore, mK293Q mice are resistant to Rosiglitazone-induced improvements in adipose tissue remodeling. Our study reveals that acetylation is a new layer of PPARγ regulation in macrophage activation, and highlights the importance and potential therapeutic implications of such PTMs in regulating metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA