Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mov Disord ; 38(12): 2155-2162, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916476

RESUMO

Genetic subtyping of patients with Parkinson's disease (PD) may assist in predicting the cognitive and motor outcomes of subthalamic deep brain stimulation (STN-DBS). Practical questions were recently raised with the emergence of new data regarding suboptimal cognitive outcomes after STN-DBS in individuals with PD associated with pathogenic variants in glucocerebrosidase gene (GBA1-PD). However, a variety of gaps and controversies remain. (1) Does STN-DBS truly accelerate cognitive deterioration in GBA1-PD? If so, what is the clinical significance of this acceleration? (2) How should the overall risk-to-benefit ratio of STN-DBS in GBA1-PD be established? (3) If STN-DBS has a negative effect on cognition in GBA1-PD, how can this effect be minimized? (4) Should PD patients be genetically tested before STN-DBS? (5) How should GBA1-PD patients considering STN-DBS be counseled? We aim to summarize the currently available relevant data and detail the gaps and controversies that exist pertaining to these questions. In the absence of evidence-based data, all authors strongly agree that clinicians should not categorically deny DBS to PD patients based solely on genotype (GBA1 status). We suggest that PD patients considering DBS may be offered genetic testing for GBA1, where available and feasible, so the potential risks and benefits of STN-DBS can be properly weighed by both the patient and clinician. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Cognitivos , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Cognição , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/complicações , Núcleo Subtalâmico/fisiologia
2.
Neuromodulation ; 25(6): 866-876, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139037

RESUMO

BACKGROUND AND OBJECTIVES: Bilateral subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson's disease (PD) can have detrimental effects on eye movement inhibitory control. To investigate this detrimental effect of bilateral STN DBS, we examined the effects of manipulating STN DBS amplitude on inhibitory control during the antisaccade task. The prosaccade error rate during the antisaccade task, that is, directional errors, was indicative of impaired inhibitory control. We hypothesized that as stimulation amplitude increased, the prosaccade error rate would increase. MATERIALS AND METHODS: Ten participants with bilateral STN DBS completed the antisaccade task on six different stimulation amplitudes (including zero amplitude) after a 12-hour overnight withdrawal from antiparkinsonian medication. RESULTS: We found that the prosaccade error rate increased as stimulation amplitude increased (p < 0.01). Additionally, prosaccade error rate increased as the modeled volume of tissue activated (VTA) and STN overlap decreased, but this relationship depended on stimulation amplitude (p = 0.04). CONCLUSIONS: Our findings suggest that higher stimulation amplitude settings can be modulatory for inhibitory control. Some individual variability in the effect of stimulation amplitude can be explained by active contact location and VTA-STN overlap. Higher stimulation amplitudes are more deleterious if the active contacts fall outside of the STN resulting in a smaller VTA-STN overlap. This is clinically significant as it can inform clinical optimization of STN DBS parameters. Further studies are needed to determine stimulation amplitude effects on other aspects of cognition and whether inhibitory control deficits on the antisaccade task result in a meaningful impact on the quality of life.


Assuntos
Estimulação Encefálica Profunda , Movimentos Oculares , Doença de Parkinson , Núcleo Subtalâmico , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Núcleo Subtalâmico/fisiologia
4.
Mov Disord ; 32(2): 274-277, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27911008

RESUMO

BACKGROUND: The aim of this postmortem study was to compare, in Parkinson's disease subjects with and without bilateral subthalamic nucleus deep brain stimulation (STN-DBS), the loss of pigmented neurons within the substantia nigra and pathological alpha-synuclein density within the SN and other brain regions. METHODS: PD subjects were identified from the Arizona Study of Aging and Neurodegenerative Disorders database (STN-DBS = 11, non-DBS = 156). Pigmented neuron loss scores within the substantia nigra as well as alpha-synuclein density scores within the substantia nigra and 9 other brain regions were compared, the latter individually and in summary as the Lewy body brain load score. RESULTS: DBS subjects had higher alpha-synuclein density scores within the substantia nigra, olfactory bulb, and locus ceruleus, as well as higher total Lewy body brain load scores when compared with non-DBS subjects. No differences in substantia nigra pigmented neuron loss scores were found. CONCLUSIONS: STN-DBS subjects tend to have higher alpha-synuclein density scores, but do not have a differential loss of substantia nigra pigmented neurons. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Doença de Parkinson/terapia , Núcleo Subtalâmico
5.
Clin Neurophysiol ; 162: 41-52, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555666

RESUMO

OBJECTIVE: We aimed to gain further insight into previously reported beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on visually-guided saccades by examining the effects of unilateral compared to bilateral stimulation, paradigm, and target eccentricity on saccades in individuals with Parkinson's disease (PD). METHODS: Eleven participants with PD and STN-DBS completed the visually-guided saccade paradigms with OFF, RIGHT, LEFT, and BOTH stimulation. Rightward saccade performance was evaluated for three paradigms and two target eccentricities. RESULTS: First, we found that BOTH and LEFT increased gain, peak velocity, and duration compared to OFF stimulation. Second, we found that BOTH and LEFT stimulation decreased latency during the gap and step paradigms but had no effect on latency during the overlap paradigm. Third, we found that RIGHT was not different compared to OFF at benefiting rightward saccade performance. CONCLUSIONS: Left unilateral and bilateral stimulation both improve the motor outcomes of rightward visually-guided saccades. Additionally, both improve latency, a cognitive-motor outcome, but only in paradigms when attention does not require disengagement from a present stimulus. SIGNIFICANCE: STN-DBS primarily benefits motor and cognitive-motor aspects of visually-guided saccades related to reflexive attentional shifting, with the latter only evident when the fixation-related attentional system is not engaged.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Movimentos Sacádicos , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Movimentos Sacádicos/fisiologia , Núcleo Subtalâmico/fisiopatologia , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estimulação Luminosa/métodos
6.
J Parkinsons Dis ; 13(6): 917-935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522216

RESUMO

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) improves intensive aspects of movement (velocity) in people with Parkinson's disease (PD) but impairs the more cognitively demanding coordinative aspects of movement (error). We extended these findings by evaluating STN-DBS induced changes in intensive and coordinative aspects of movement during a memory-guided reaching task with varying retention delays. OBJECTIVE: We evaluated the effect of STN-DBS on motor control during a memory-guided reaching task with short and long retention delays in participants with PD and compared performance to healthy controls (HC). METHODS: Eleven participants with PD completed the motor section of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS III) and performed a memory-guided reaching task under four different STN-DBS conditions (DBS-OFF, DBS-RIGHT, DBS-LEFT, and DBS-BOTH) and two retention delays (0.5 s and 5 s). An additional 13 HC completed the memory-guided reaching task. RESULTS: Unilateral and bilateral STN-DBS improved the MDS-UPDRS III scores. In the memory-guided reaching task, both unilateral and bilateral STN-DBS increased the intensive aspects of movement (amplitude and velocity) in the direction toward HC but impaired coordinative aspects of movement (error) away from the HC. Furthermore, movement time was decreased but reaction time was unaffected by STN-DBS. Shorter retention delays increased amplitude and velocity, decreased movement times, and decreased error, but increased reaction times in the participants with PD. There were no interactions between STN-DBS condition and retention delay. CONCLUSION: STN-DBS may affect cognitive-motor functioning by altering activity throughout cortico-basal ganglia networks and the oscillatory activity subserving them.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Movimento/fisiologia , Cognição , Resultado do Tratamento
7.
Front Hum Neurosci ; 17: 1224611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850040

RESUMO

Background: Antiparkinson medication and subthalamic nucleus deep brain stimulation (STN-DBS), two common treatments of Parkinson's disease (PD), effectively improve skeletomotor movements. However, evidence suggests that these treatments may have differential effects on eye and limb movements, although both movement types are controlled through the parallel basal ganglia loops. Objective: Using a task that requires both eye and upper limb movements, we aimed to determine the effects of medication and STN-DBS on eye and upper limb movement performance. Methods: Participants performed a visually-guided reaching task. We collected eye and upper limb movement data from participants with PD who were tested both OFF and ON medication (n = 34) or both OFF and ON bilateral STN-DBS while OFF medication (n = 11). We also collected data from older adult healthy controls (n = 14). Results: We found that medication increased saccade latency, while having no effect on reach reaction time (RT). Medication significantly decreased saccade peak velocity, while increasing reach peak velocity. We also found that bilateral STN-DBS significantly decreased saccade latency while having no effect on reach RT, and increased saccade and reach peak velocity. Finally, we found that there was a positive relationship between saccade latency and reach RT, which was unaffected by either treatment. Conclusion: These findings show that medication worsens saccade performance and benefits reaching performance, while STN-DBS benefits both saccade and reaching performance. We explore what the differential beneficial and detrimental effects on eye and limb movements suggest about the potential physiological changes occurring due to treatment.

8.
Front Neurol ; 13: 980935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324383

RESUMO

Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.

9.
Clin Neurophysiol ; 143: 145-153, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995722

RESUMO

OBJECTIVE: We examined whether previous inconsistent findings about the effect of anti-Parkinsonian medication on visually-guided saccades (VGS) were due to the use of different paradigms, which change the timing of fixation offset and target onset, or different target eccentricities. METHODS: Thirty-three participants with Parkinson's disease (PD) completed the VGS tasks OFF and ON medication, along with 13 healthy controls. Performance on 3 paradigms (gap, step, and overlap) and 2 target eccentricities was recorded. We used mixed models to determine the effect of medication, paradigm, and target eccentricity on saccade latency, gain, and peak velocity. RESULTS: First, we confirmed known paradigm effects on latency, and target eccentricity effects on gain and peak velocity in participants with PD. Second, latency was positively associated with OFF medication Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score in PD. Third, medication prolonged latency for the larger target eccentricity across the 3 paradigms, while decreasing gain and peak velocity in the step paradigm across target eccentricities. CONCLUSIONS: Medication adversely affected and was not therapeutically beneficial for VGS. Previous inconsistencies may have resulted from chosen target eccentricity. SIGNIFICANCE: The negative medication effect on VGS may be clinically significant, as many activities in daily life require oculomotor control, inhibitory control, and visually-guided shifts of attention.


Assuntos
Doença de Parkinson , Movimentos Oculares , Humanos , Movimento , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Movimentos Sacádicos
10.
Oper Neurosurg (Hagerstown) ; 20(4): 419-425, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428767

RESUMO

BACKGROUND: Segmented deep brain stimulation (DBS) leads, which are capable of steering current in the direction of any 1 of 3 segments, can result in a wider therapeutic window by directing current away from unintended structures, particularly, the corticospinal tract (CST). It is unclear whether the use of motor evoked potentials (MEPs) is feasible during DBS surgery via stimulation of individual contacts/segments in order to quantify CST activation thresholds and optimal contacts/segments intraoperatively. OBJECTIVE: To assess the feasibility of using MEP to identify CST thresholds for ring and individual segments of the DBS lead under general anesthesia. METHODS: MEP testing was performed during pulse generator implantation under general anesthesia on subjects who underwent DBS lead implantation into the subthalamic nucleus (STN). Stimulation of each ring and segmented contacts of the directional DBS lead was performed until CST threshold was reached. Stereotactic coordinates and thresholds for each contact/segment were recorded along with the initially activated muscle group. RESULTS: A total of 34 hemispheres were included for analysis. MEP thresholds were recorded from 268 total contacts/segments. For segmented contacts (2 and 3, respectively), the mean highest CST thresholds were 2.33 and 2.62 mA, while the mean lowest CST thresholds were 1.7 and 1.89 mA, suggesting differential thresholds in relation to CST. First dorsal interosseous and abductor pollicis brevis (34% each) were the most commonly activated muscle groups. CONCLUSION: MEP threshold recording from segmented DBS leads is feasible. MEP recordings can identify segments with highest CST thresholds and may identify segment orientation in relation to CST.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Potencial Evocado Motor , Estudos de Viabilidade , Humanos , Doença de Parkinson/terapia
11.
Front Neurol ; 12: 723476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659089

RESUMO

Introduction: Up to 27% of individuals undergoing subthalamic nucleus deep brain stimulation (STN-DBS) have a genetic form of Parkinson's disease (PD). Glucocerebrosidase (GBA) mutation carriers, compared to sporadic PD, present with a more aggressive disease, less asymmetry, and fare worse on cognitive outcomes with STN-DBS. Evaluating STN intra-operative local field potentials provide the opportunity to assess and compare symmetry between GBA and non-GBA mutation carriers with PD; thus, providing insight into genotype and STN physiology, and eligibility for and programming of STN-DBS. The purpose of this pilot study was to test differences in left and right STN resting state beta power in non-GBA and GBA mutation carriers with PD. Materials and Methods: STN (left and right) resting state local field potentials were recorded intraoperatively from 4 GBA and 5 non-GBA patients with PD while off medication. Peak beta power expressed as a ratio to total beta power (peak beta ratio) was compared between STN hemispheres and groups while co-varying for age, age of disease onset, and disease severity. Results: Peak beta ratio was significantly different between the left and the right STN for the GBA group (p < 0.01) but not the non-GBA group (p = 0.56) after co-varying for age, age of disease onset, and disease severity. Discussion: Peak beta ratio in GBA mutation carriers was more asymmetric compared with non-mutation carriers and this corresponded with the degree of clinical asymmetry as measured by rating scales. This finding suggests that GBA mutation carriers have a physiologic signature that is distinct from that found in sporadic PD.

12.
Mov Disord Clin Pract ; 3(5): 465-471, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27709117

RESUMO

OBJECTIVE: In a cohort of patients with young-onset Parkinson's disease (PD), the authors assessed (1) the prevalence of genetic mutations in those who enrolled in deep brain stimulation (DBS) programs compared with those who did not enroll DBS programs and (2) specific genetic and clinical predictors of DBS enrollment. METHODS: Subjects were participants from 3 sites (Columbia University, Rush University, and the University of Pennsylvania) in the Consortium on Risk for Early Onset Parkinson's Disease (CORE-PD) who had an age at onset < 51 years. The analyses presented here focus on glucocerebrosidase (GBA), leucine-rich repeat kinase 2 (LRRK2), and parkin (PRKN) mutation carriers. Mutation carrier status, demographic data, and disease characteristics in individuals who did and did not enroll in DBS were analyzed. The association between mutation status and DBS placement was assessed in logistic regression models. RESULTS: Patients who had PD with either GBA, LRRK2, or PRKN mutations were more common in the DBS group (n = 99) compared with the non-DBS group (n = 684; 26.5% vs. 16.8%, respectively; P = 0.02). In a multivariate logistic regression model, GBA mutation status (odds ratio, 2.1; 95% confidence interval, 1.0-4.3; P = 0.05) was associated with DBS surgery enrollment. However, when dyskinesia was included in the multivariate logistic regression model, dyskinesia had a strong association with DBS placement (odds ratio, 3.8; 95% confidence interval, 1.9-7.3; P < 0.0001), whereas the association between GBA mutation status and DBS placement did not persist (P = 0.25). CONCLUSIONS: DBS populations are enriched with genetic mutation carriers. The effect of genetic mutation carriers on DBS outcomes warrants further exploration.

13.
Mov Disord Clin Pract ; 2(4): 379-383, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30363547

RESUMO

OBJECTIVE: We examined tolerability of preoperative neuropsychological testing (the Core Assessment Program for Surgical Interventional Therapies in Parkinson's Disease [CAPSIT-PD] protocol) for DBS. We also examined factors that may influence tolerability, including fatigue, global cognitive function, depression, and patient-based characteristics. METHODS: In this retrospective study, we reviewed preoperative neuropsychological testing results from 35 patients who were scheduled to undergo DBS. We examined the overall tolerability of the full battery and the tolerability of each test. We placed attention on a test's placement in the fixed order of the battery to measure whether there was a clustering of poorly tolerated tests toward the end of the battery as an indication of fatigue. Spearman's rank correlation was used to determine the relationship between tolerability and (1) global cognitive function, (2) depression, and (3) patient-based characteristics. RESULTS: Fourteen subjects (40%) were able to tolerate the full battery and completed all 10 tests. The domains that were least tolerated pertained to executive function and procedural memory. There was a consistent time-based tolerability pattern that was observed. There was a significant correlation between tolerability and global cognitive function (ρ = 0.344; P = 0.043), but not depression (P = 0.197). There was a significant correlation between tolerability and age (ρ = -0.491; P = 0.003) and disease duration (ρ = -0.442; P = 0.008), but not UPDRS-III scores (P = 0.284). CONCLUSION: Our results have shown limited tolerability of the full neuropsychological battery as outlined by the CAPSIT-PD protocol. We suggest the consideration of updating the neuropsychological assessment used in the CAPSIT-PD protocol.

14.
Front Neurosci ; 9: 306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388718

RESUMO

OBJECTIVE: An inflammation-driven model of PD has been proposed based on the endotoxin lipopolysaccaride (LPS), a potential source of inflammation in the gastrointestinal system linked to neurotoxicity. Systemic exposure to bacterial endotoxin (LPS) can be determined by measuring plasma LPS binding protein (LBP). We aimed to evaluate whether lipopolysaccharide binding protein (LBP) can be used to distinguish PD subjects from control subjects and to assess whether LBP levels correlate with PD disease severity. METHODS: We measured plasma LBP (ng/ml) using an ELISA kit in 94 PD subjects of various stages and 97 control subjects. Disease severity was assessed using the UPDRS and Hoehn and Yahr staging. The LBP level between the PD and control groups was compared using analysis of covariance. Spearman correlation was used to explore the relationship between LBP level and disease severity. RESULTS: The mean LBP level in PD subjects (n = 94) was significantly different from control subjects (n = 95, p = 0.018). In PD subjects, we did not find a correlation between mean LBP level and disease severity. CONCLUSIONS: Our data suggests that LBP is one GI biomarker related to LPS induced neurotoxicity. However, there was significant variability in LBP levels within the PD and control groups, limiting its utility as a stand-alone biomarker. This study supports the role of LPS induced neurotoxicity in PD and further exploration of this pathway may be useful in developing sensitive and specific biomarkers for PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA