RESUMO
The detection and classification of microplastics in the marine environment is a complex task that implies the use of delicate and expensive instrumentation. In this paper, we present a preliminary feasibility study for the development of a low-cost, compact microplastics sensor that could be mounted, in principle, on a float of drifters, for the monitoring of large marine surfaces. The preliminary results of the study indicate that a simple sensor equipped with three infrared-sensitive photodiodes can reach classification accuracies around 90% for the most-diffused floating microplastics in the marine environment (polyethylene and polypropylene).
RESUMO
The rapid identification of beached marine micro-plastics is essential for the determination of the source of pollution and for planning the most effective strategies for remediation. In this paper, we present the results obtained by applying the laser-induced breakdown spectroscopy (LIBS) technique on a large sample of different kinds of plastics that can be found in a marine environment. The use of chemometric analytical tools allowed a rapid classification of the pellets with an accuracy greater than 80%. The LIBS spectrum and statistical tests proved their worth to quickly identify polymers, and in particular, to distinguish C-O from C-C backbone pellets, and PE from PP ones. In addition, the PCA analysis revealed a correlation between appearance (surface pellets roughness) and color (yellowing), as reported by other recent studies. The preliminary results on the analysis of metals accumulated on the surface of the pellets are also reported. The implication of these results is discussed in view of the possibility of frequent monitoring of the marine plastic pollution on the seacoast.
Assuntos
Microplásticos , Plásticos , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Lasers , Plásticos/química , Análise EspectralRESUMO
In this article, we compare two analytical methods that have been recently proposed: the columnar density Saha-Boltzmann plot method of Cristoforetti and Tognoni (Cristoforetti, G.; Tognoni, E. Spectrochim. Acta, Part B, 2013, 79-80, 63-71) and the C-sigma model of Aragon and Aguilera (Aragon, C.; Aguilera, J. A. J. Quant. Spectrosc. Radiat. Trans. 2014, 149, 90-102). Both methods are based on the exploitation of self-absorbed lines for the characterization of plasmas in laser-induced breakdown spectroscopy experiments. However, although the two methods can be safely applied in many cases, their usefulness is limited in many practical cases of interest because of the intrinsic constraints of the used plasma model or because of the complexity of the numerical treatment. The two methods are presented here and critically discussed. Finally, an extended C-sigma approach is proposed to merge the advantages of the two methods, overcoming their intrinsic limitations and simplifying the numerical treatment.
RESUMO
In this study, the deep learning algorithm of Convolutional Neural Network long short-term memory (CNN-LSTM) is used to classify various jewelry rocks such as agate, turquoise, calcites, and azure from various historical periods and styles related to Shahr-e Sokhteh. Here, the CNN-LSTM architecture includes utilizing CNN layers for the extraction of features from input data mixed with LSTMs for supporting sequence forecasting. It should be mentioned that interpretable deep learning-assisted laser induced breakdown spectroscopy helped achieve excellent performance. For the first time, this paper interprets the Convolutional LSTM effectiveness layer by layer in self-adaptively obtaining LIBS features and the quantitative data of major chemical elements in jewelry rocks. Moreover, Lasso method is applied on data as a factor for investigation of interoperability. The results demonstrated that LIBS can be essentially combined with a deep learning algorithm for the classification of different jewelry songs. The proposed methodology yielded high accuracy, confirming the effectiveness and suitability of the approach in the discrimination process.
RESUMO
The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed. In the present compilation, this dilemma is overcome by assembling the most impactful publications in the area of analytical atomic spectrometry. Each entry was proposed by at least one current expert in the field and supported by a narrative that justifies its inclusion. The entries were then assembled into a coherent sequence and returned to contributors for a round-robin review.
RESUMO
A macroscopic lithological study and physical (hardness, size, weight) investigations, coupled with laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XRF) chemical analyses of three egg- and one pear-shaped polished black stones, exposed in the library of the child home of the famous poet Giacomo Leopardi, at Recanati (Italy), were carried out. They are characterized by different sizes: two with the same weight of 16.9 kg and the two smaller ones of 5.6 kg each, corresponding to multiples of standard roman weights (drachma and scrupulum). These features and the presence of some grooves on the rock artefacts, probably for grappling hooks, suggest an original use as counterweight for the four black stones herein classified as amphibole-bearing serpentinites whose lithologies are far away from Recanati (probably coming from geological outcrops in Tuscany). The four serpentinite stones closely match with the so-called Lapis Aequipondus used in antiquity by the Romans as counterweights. Due to the presence of lead rings or iron hooks in these stones, Lapis Aequipondus were also used for martyrdoms during the persecution of Christians in the Roman period, attached to the necks of martyrs that were then thrown in the wells or attached to the ankles of hanging bodies. This is the reason why these stones are also known as Lapis Martyrum, venerated with the relative martyrs, in several churches of Rome. The four black stones investigated probably arrived at Recanati from Rome after the middle of the 19th century. In the past, Christians also called Lapis Martyrum the "devil's stones" (Lapis Diaboli). This could also be the reason for the popular belief that black stones cannot be touched by people, except those of the Leopardi dynasty. This work contributes to the cultural heritage of Leopardi's child home, as the four black stones had never been investigated.
RESUMO
The introduction of "deep learning" algorithms for feature identification in digital imaging has paved the way for artificial intelligence applications that up to a decade ago were considered technologically impossible to achieve, from the development of driverless vehicles to the fully automated diagnostics of cancer and other diseases from histological images. The success of deep learning applications has, in turn, attracted the attention of several researchers for the possible use of these methods in chemometrics, applied to the analysis of complex phenomena as, for example, the optical emission of laser-induced plasmas. In this paper, we will discuss the advantages and disadvantages of convolutional neural networks, one of the most diffused deep learning techniques, in laser-induced breakdown spectroscopy (LIBS) applications (classification and quantitative analysis), to understand the real potential of "deep LIBS" in practical everyday use. In particular, the comparison with the results obtained using "shallow" artificial neural networks will be presented and discussed, taking as a case study the analysis of six bronze samples of known composition.
Assuntos
Inteligência Artificial , Redes Neurais de Computação , Algoritmos , Análise EspectralRESUMO
The branching ratio method is usually used to evaluate the optical thinness conditions in laser-generated plasmas, which are important for the application of analytical methods such calibration free laser induced breakdown spectroscopy (CF-LIBS). In this communication, we warn on the possibility that in some circumstances, the branching-ratio method might give results close to the one characterizing optically thin plasma conditions, even in the presence of a substantial self-absorption for the transitions considered.
RESUMO
The knowledge of the spectroscopic parameters of the elemental emission lines is important for diagnostics of laser-induced plasmas and the application of calibration-free/fundamental parameters analytical methods. In this paper, we used the recently proposed time-independent extended C-sigma method for determining, for the first time, the transition probabilities and Stark broadening coefficients of several neutral (TIECS) and ionic silver emission lines. The method allows for a compensation of self-absorption in the plasma, thus providing a measure of the spectroscopic parameters which is not affected by the optical thickness of the plasma.
RESUMO
In exploiting the analytical capabilities of plasma-based spectroscopy method, the evaluation of plasma parameters, particularly the plasma temperature, is a crucial step. In this work, a modified Saha-Boltzmann plot, which uses the columnar densities of atomic and ionic ground levels, is utilized to calculate the plasma temperature in a laser-induced plasma from an aluminum alloy target. The columnar densities are here calculated by quantifying the self-absorption of resonance lines. It is demonstrated that this is a promising method for accurate determination of plasma temperature. To validate the capability of this technique, plasma emission is measured at different gate delay times. For each delay, excitation temperature is calculated both by the conventional Saha-Boltzmann plot (by using the excited states) and by exploiting the new Columnar Density Saha-Boltzmann (CD-SB) plot. The results suggest that at later times of the plasma evolution, the CD-SB plot can be more suitable for the determination of plasma temperature than conventional Saha-Boltzmann plot. These findings provide a new approach for physical characterization of plasmas and give access to a wealth of information about the state of plasma.
RESUMO
In this work, a critical review of the current nondestructive probing and image analysis approaches is presented, to revealing otherwise invisible or hardly discernible details in manuscripts and paintings relevant to cultural heritage and archaeology. Multispectral imaging, X-ray fluorescence, Laser-Induced Breakdown Spectroscopy, Raman spectroscopy and Thermography are considered, as techniques for acquiring images and spectral image sets; statistical methods for the analysis of these images are then discussed, including blind separation and false colour techniques. Several case studies are presented, with particular attention dedicated to the approaches that appear most promising for future applications. Some of the techniques described herein are likely to replace, in the near future, classical digital photography in the study of ancient manuscripts and paintings.
RESUMO
The "Monetiere" of Florence hosts the most important collection of Etruscan coins in the world. In the framework of the longstanding collaboration between the Monetiere and the Applied Laser and Spectroscopy Laboratory in Pisa, the Etruscan gold coin collection of the museum was studied. The measurements were performed at the Monetiere, using a portable energy-dispersive X-ray fluorescence (XRF) instrument. The quantitative determination of the gold alloys used for the realization of the coins was obtained applying the fundamental parameters method to the XRF spectra; as a result, using the self-organizing maps method, we were able to classify the coins in four main groups. The main parameter determining the classification is the quantity of silver in the alloy. The results obtained shed some light about the origin of the coins under study.
RESUMO
The laser-induced breakdown spectroscopy (LIBS) technique was used for analyzing the composition of an ancient Roman mortar (5th century A.D.), exploiting an experimental setup which allows the determination of the compositions of binder and aggregate in few minutes, without the need for sample treatment. Four thousand LIBS spectra were acquired from an area of 10 mm2, with a 50 µm lateral resolution. The elements of interest in the mortar sample (H, C, O, Na, Mg, Al, Si, K, Ca, Ti, Mn, Fe) were detected and mapped. The collected data graphically shown as compositional images were interpreted using different statistical approaches for the determination of the chemical composition of the binder and aggregate fraction. The methods of false color imaging, blind separation, and self-organizing maps were applied and their results are discussed in this paper. In particular, the method based on the use of self-organizing maps gives well interpretable results in very short times, without any reduction in the dimensionality of the system.
RESUMO
In the occasion of the celebrations for the 150th anniversary of the founding of Italy (1861-2011), it was decided to analyse the artwork "The Italian Flag" (La Bandiera Italiana) created by the artist Fernando Melani (Pistoia, 1907-1985), one of the precursors of the Poor Art artistic movement in Italy. This project is a follow-up to a previous study which was mainly focused on the pigments and dyes found in his home-studio. The main goal of this paper is to identify a correct diagnostic plan, based on the use of a combination of non-invasive and micro-invasive methodologies, in order to determine the state of preservation and define the best conservation procedures for a contemporary artwork. Visible, infrared and infrared false colour images as well as the Fibre Optic Reflectance Spectroscopy (FORS) technique were applied in situ to analyse The Italian Flag. Laser Induced Breakdown Spectroscopy (LIBS), Fourier Transform Infrared (FT-IR) and micro-Raman spectroscopies, Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py-GC/MS), High Performance Liquid Chromatography with Diode Arrays Detection (HPLC-DAD) and Mass Spectrometric Detection (HPLC-ESI-Q-ToF) were all applied to three small samples detached from the three painted (green-blue, white and red-yellow, respectively) areas of the flag. The combination of the data obtained with all these techniques made possible a comprehensive understanding of both the chemical composition and physical behaviour of the materials used by the artist and supported curators in defining the preventive conservation of this artwork.
RESUMO
The influence of crater depth on plasma properties and laser-induced breakdown spectroscopy (LIBS) emission has been evaluated. Laser-induced plasmas were generated at the surface and at the bottom of different craters in a copper sample. Plasmas produced at the sample surface and at the bottom of the craters were spatially and temporally resolved. LIBS emission, temperature, and electronic number density of the plasmas were evaluated. It is shown that the confinement effect produced by the craters enhances the LIBS signal from the laser-induced plasmas.
Assuntos
Cobre/análise , Cobre/química , Gases/análise , Lasers , Análise Espectral/métodos , Cobre/efeitos da radiação , Gases/química , Propriedades de Superfície , TemperaturaRESUMO
Starting from the general expressions describing the line emission by a homogeneous plasma in local thermal equilibrium (LTE), in the approximation of Lorentzian shape of the line profile, a universal expression can be obtained relating the optical depth of the line to measurable quantities such as integrated line intensity, peak value, and full width at half-maximum (FWHM). This universal curve could be used for calculating the optical depth from experimental spectra without knowledge of the spectroscopic parameters of the emission line. Examples are given using experimental and computer-generated synthetic spectra.
RESUMO
In this paper we present a new method for determining the self-absorption coefficients of emission lines in laser-induced breakdown spectroscopy (LIBS) experiments. With respect to other methods already present in the literature, the proposed approach has the advantage of not requiring, providing some conditions are fulfilled, any knowledge of the plasma parameters such as temperature and electron number density and of the emission line spectral coefficients such as transition probability. An example of the application of the approach is given for emission lines measured at different delay times after laser ablation of a silver target.
RESUMO
Limits of detection have been studied for several elements in aluminium and steel alloys, at atmospheric pressure in air, by use of the single and collinear double-pulse configurations of laser-induced breakdown spectroscopy. For this purpose, calibration plots were constructed for Mg, Al, Si, Ti, Cr, Mn, Fe, Ni, and Cu using a set of certified aluminium alloy samples and a set of certified steel samples. The investigation included optimization of the experimental conditions to furnish the best signal-to-noise ratio. Inter-pulse delay, gate width, and acquisition delay were studied. The detection limits for the elements of interest were calculated under the optimum conditions for the double-pulse configuration and compared with those obtained under the optimum conditions for single-pulse configuration. Significantly improved detection limits were achieved, for all the elements investigated, and in both aluminium and steel, by use of the double-pulse configuration. The experimental findings are discussed in terms of the measured plasma conditions (particle and electron density, and temperature).
RESUMO
The concentration of the main minerals present in human hair is measured on several subjects by Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) and compared with the results obtained through a commercial analytical laboratory. The possibility of using CF-LIBS for mineral analysis in hair is discussed, as well as its feasibility for the fast and inexpensive determination of the occurrence of heavy-metal poisoning in hair.