RESUMO
The European XFEL (EuXFEL) is a 3.4-km long X-ray source, which produces femtosecond, ultrabrilliant and spatially coherent X-ray pulses at megahertz (MHz) repetition rates. This X-ray source has been designed to enable the observation of ultrafast processes with near-atomic spatial resolution. Time-resolved crystallographic investigations on biological macromolecules belong to an important class of experiments that explore fundamental and functional structural displacements in these molecules. Due to the unusual MHz X-ray pulse structure at the EuXFEL, these experiments are challenging. Here, we demonstrate how a biological reaction can be followed on ultrafast timescales at the EuXFEL. We investigate the picosecond time range in the photocycle of photoactive yellow protein (PYP) with MHz X-ray pulse rates. We show that difference electron density maps of excellent quality can be obtained. The results connect the previously explored femtosecond PYP dynamics to timescales accessible at synchrotrons. This opens the door to a wide range of time-resolved studies at the EuXFEL.
Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Fotorreceptores Microbianos/química , Conformação Proteica , Luz , Modelos Moleculares , Fatores de TempoRESUMO
Ultrafast laser systems, such as optical parametric chirped pulse amplifiers (OPCPA), are complex tools. Optimizing laser performance for a given application is often plagued by intricate couplings between different output parameters, making simultaneous control of multiple pulse properties difficult. Here, we experimentally demonstrate an autonomous tuning procedure of a white-light seeded two-stage OPCPA using an evolutionary strategy to reliably reach an optimized working point. We use the data collected during the tuning procedure to calibrate a performance model of the laser system, which we then apply to stabilize the intricately coupled laser output energy and spectrum simultaneously. Our approach ensures reliable day-to-day operation at optimized working points without manual tuning. We demonstrate shot-to-shot energy stability of <0.18 % rms, in combination with <25 pm rms wavelength stability and <0.2 % rms bandwidth stability during multi-day operation.
RESUMO
Extreme heat loads on optics, in particular the final pulse compression gratings, are a major hurdle to overcome in the ongoing push towards high average power (kW) and high repetition rate (kHz) operation of terawatt-class Ti:sapphire lasers. Multilayer dielectric (MLD) diffraction gratings have been suggested as a potential alternative to traditionally gold-coated compressor gratings, which are plagued by high energy absorption in the top gold layer. However, to support the required bandwidth (and ultimately the desired pulse duration) with MLD gratings, the gratings have to be operated in an out-of-plane geometry near the Littrow angle. Here, we report on the design of an MLD-based out-of-plane test compressor and a matching custom stretcher. We present a full characterization of the MLD compressor, focusing on its spectral transmission and the significance of laser pulse polarization in the out-of-plane geometry. To demonstrate compression of 40â µJ pulses centered at 800 nm wavelength to 26 fs pulse duration, we use the compressor with an MLD and gold grating configuration, and fully characterize the compressed pulses. Extrapolating our results indicates that MLD-grating-based out-of-plane compressors can support near-transform-limited pulses with sub-30 fs duration and good quality, demonstrating the viability of this concept for kW-level ultrafast Ti:sapphire laser systems.
RESUMO
Frequency doubling of a Q-switched Yb-doped rod-type 4 × 4 multicore fiber (MCF) laser system is reported. A second harmonic generation (SHG) efficiency of up to 52% was achieved with type I non-critically phase-matched lithium triborate (LBO), with a total SHG pulse energy of up to 17 mJ obtained at 1 kHz repetition rate. The dense parallel arrangement of amplifying cores into a shared pump cladding enables a significant increase in the energy capacity of active fibers. The frequency-doubled MCF architecture is compatible with high-repetition-rate and high-average-power operation and may provide an efficient alternative to bulk solid-state systems as pump sources for high-energy titanium-doped sapphire lasers.
RESUMO
Ultrafast laser pulses featuring both high spatio-temporal beam quality and excellent energy stability are crucial for many applications. Here, we present a seed laser with high beam quality and energy stability, based on a collinear optical parametric chirped pulse amplification (OPCPA) stage, delivering 46 µJ pulses with a 25 fs Fourier limit at 1 kHz repetition rate. While saturation of the OPCPA stage is necessary for achieving the highest possible energy stability, it also leads to a degradation of the beam quality. Using simulations, we show that spectrally dependent, rotationally symmetric aberrations dominate the collinear OPCPA in saturation. We experimentally characterize these aberrations and then remove distinct spatial frequencies to greatly improve the spectral homogeneity of the beam quality, while keeping an excellent energy stability of 0.2 % rms measured over 70 hours.
RESUMO
User operation at the European X-ray Free-Electron Laser Facility started at the SASE1 undulator beamline in fall 2017. The majority of the experiments utilize optical lasers (mostly ultrafast) for pump-probe-type measurements in combination with X-ray pulses. This manuscript describes the purpose-developed pump-probe laser system as installed at SASE1, implemented features and plans for further upgrades.
RESUMO
Intense, ultrashort, and high-repetition-rate X-ray pulses, combined with a femtosecond optical laser, allow pump-probe experiments with fast data acquisition and femtosecond time resolution. However, the relative timing of the X-ray pulses and the optical laser pulses can be controlled only to a level of the intrinsic error of the instrument which, without characterization, limits the time resolution of experiments. This limitation inevitably calls for a precise determination of the relative arrival time, which can be used after measurement for sorting and tagging the experimental data to a much finer resolution than it can be controlled to. The observed root-mean-square timing jitter between the X-ray and the optical laser at the SPB/SFX instrument at European XFEL was 308 fs. This first measurement of timing jitter at the European XFEL provides an important step in realizing ultrafast experiments at this novel X-ray source. A method for determining the change in the complex refractive index of samples is also presented.
RESUMO
We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).
Assuntos
Lasers , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
We report on a method to create multiple waveguides simultaneously in 3D in fused silica. A combination of adaptive beam shaping with femtosecond laser writing is used to write two waveguides with changing separation and depth. The method is based on a programmable phase modulator and a dynamic variation of the phase-pattern during the writing process. The depth difference can be dynamically varied by changing a chirp parameter of the applied phase grating pattern. It can be employed in various photonic devices such as couplers, splitters and interferometers. Here we demonstrate splitters with both outputs ending in different depth.
Assuntos
Óptica e Fotônica , Dióxido de Silício/química , Algoritmos , Desenho de Equipamento , Imageamento Tridimensional , Interferometria/métodos , Lasers , Modelos Estatísticos , FótonsRESUMO
We present a non-collinear optical parametric amplifier (NOPA) delivering sub-10-fs pulses with 420 nJ of pulse energy. The system is driven by microjoule pulses from an Yb:KYW oscillator with cavity-dumping and a subsequent single-stage rod-type fiber amplifier at 1-MHz repetition rate. The ultrabroadband seed is based on stable white-light generation from 420 fs long pulses in a YAG plate.
Assuntos
Amplificadores Eletrônicos , Lasers , Processamento de Sinais Assistido por Computador/instrumentação , Transferência de Energia , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
We present an OPCPA system delivering 8.8 fs (3.3 optical cycles) pulses with 1.3 microJ of energy at 143 kHz repetition rate. Pump and seed for the parametric amplification are simultaneously generated by a broadband Ti:sapphire oscillator. The spectral components beyond 1000 nm are separated and amplified in an Yb:YAG thin-disk regenerative amplifier. The pulses are characterized using autocorrelation and SPIDER apparatus. With a pulse peak power of nearly 130 MW, the system is well-suited for future table top strong field experiments.
RESUMO
We present a two-stage OPCPA system based on a Ti:sapphire seed and a thin-disk regenerative amplifier producing compressed pulse energies of more than 3 µJ and durations of less than 6 fs at a high repetition rate of 143 kHz. In combination with the obtained CEP stability and the repetition rate scalability between 100 and 500 kHz the system forms an ideal tool for high field and phase sensitive spectroscopic experiments.
Assuntos
Amplificadores Eletrônicos , Lasers , Iluminação/instrumentação , Oscilometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
We report on substantial pulse energy increase in Yb:KYW femtosecond laser oscillators by utilizing multiple laser crystals for an enhanced net-gain at higher pump power. The two-crystal oscillator generates pulse energies of 7 µJ at 1 MHz repetition rate which is, to our knowledge the highest energy ever reported from an Yb-doped tungstate fs-laser oscillator. The external pulse compression yields a pulse duration of 416 fs with a peak power of 12 MW being enough for stable white light generation in YAG.
Assuntos
Lasers , Óptica e Fotônica , Oscilometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Itérbio/química , Amplificadores Eletrônicos , Cristalização , Desenho de Equipamento , Luz , Fatores de Tempo , Tungstênio/químicaRESUMO
We report on a novel method to create waveguide coupler devices in fused silica by combining the technique of beam shaping with femtosecond laser writing. The method is based on a programmable phase modulator and a dynamic variation of the phase-pattern during the writing process. The major advantage is the possibility to create complex devices in a single sweep by simultaneously writing two or more waveguides with changing separation. The guiding properties and the coupling behavior between the waveguides are investigated.
RESUMO
We provide a detailed description of a serial femtosecond crystallography (SFX) dataset collected at the European X-ray free-electron laser facility (EuXFEL). The EuXFEL is the first high repetition rate XFEL delivering MHz X-ray pulse trains at 10 Hz. The short spacing (<1 µs) between pulses requires fast flowing microjets for sample injection and high frame rate detectors. A data set was recorded of a microcrystalline mixture of at least three different jack bean proteins (urease, concanavalin A, concanavalin B). A one megapixel Adaptive Gain Integrating Pixel Detector (AGIPD) was used which has not only a high frame rate but also a large dynamic range. This dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development and for data analysis training for prospective XFEL users.
Assuntos
Concanavalina A/química , Proteínas de Plantas/química , Urease/química , Cristalização , Cristalografia por Raios XRESUMO
The properties of passively mode-locked laser oscillators based on Ytterbium doped gain media are studied theoretically along with experimental data. Based on the chirped-pulse approach limitations due to excessive non-linearities are avoided, opening up new routes for energy scaling of mode-locked solid-state oscillators. Predictions about potential future pulse energies are made and possible experimental problems are discussed.
Assuntos
Desenho Assistido por Computador , Lasers Semicondutores , Modelos Teóricos , Processamento de Sinais Assistido por Computador/instrumentação , Itérbio , Simulação por Computador , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
X-ray free-electron lasers (XFELs) enable novel experiments because of their high peak brilliance and femtosecond pulse duration. However, non-superconducting XFELs offer repetition rates of only 10-120 Hz, placing significant demands on beam time and sample consumption. We describe serial femtosecond crystallography experiments performed at the European XFEL, the first MHz repetition rate XFEL, delivering 1.128 MHz X-ray pulse trains at 10 Hz. Given the short spacing between pulses, damage caused by shock waves launched by one XFEL pulse on sample probed by subsequent pulses is a concern. To investigate this issue, we collected data from lysozyme microcrystals, exposed to a ~15 µm XFEL beam. Under these conditions, data quality is independent of whether the first or subsequent pulses of the train were used for data collection. We also analyzed a mixture of microcrystals of jack bean proteins, from which the structure of native, magnesium-containing concanavalin A was determined.
RESUMO
The dynamical properties of a mode-locked thin disk laser with cavity-dumping in the solitary regime are studied using numerical simulations along with experimental data. Limitations of this system as well as their origin are identified. The results of these investigations agree very well with recently published experimental results. Based on these findings design criteria for future systems are deducted and estimates of possible pulse energies are made.
RESUMO
We demonstrate, what is to our knowledge the first passively mode-locked Ytterbium based solid state high energy laser oscillator operated in the positive dispersion regime. Compared to solitary mode-locking the pulse energy can be increased with even broader spectral bandwidth. With high speed cavity dumping the laser generates 2 muJ-pulses at a 1 MHz repetition rate. The chirped output pulses are compressible down to 420 fs.
RESUMO
We demonstrate the generation of 10-fs-pulses from a noncollinear optical parametric amplifier (NOPA). The NOPA is driven by microjoule pulses from a directly diode pumped Yb:KYW oscillator with cavity-dumping.