Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 1089-1099, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156609

RESUMO

The photogeneration of multiple unpaired electron spins within molecules is a promising route to applications in quantum information science because they can be initialized into well-defined, multilevel quantum states (S > 1/2) and reproducibly fabricated by chemical synthesis. However, coherent manipulation of these spin states is difficult to realize in typical molecular systems due to the lack of selective addressability and short coherence times of the spin transitions. Here, these challenges are addressed by using donor-acceptor single cocrystals composed of pyrene and naphthalene dianhydride to host spatially oriented triplet excitons, which exhibit promising photogenerated qutrit properties. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates that spatially orienting triplet excitons in a single crystal platform imparts narrow, well-resolved, tunable resonances in the triplet EPR spectrum, allowing selective addressability of the spin sublevel transitions. Pulse-EPR spectroscopy reveals that at temperatures above 30 K, spin decoherence of these triplet excitons is driven by exciton diffusion. However, coherence is limited by electronic spin dipolar coupling below 30 K, where T2 varies nonlinearly with the optical excitation density due to exciton annihilation. Overall, an optimized coherence time of T2 = 7.1 µs at 20 K is achieved. These results provide important insights into designing solid-state molecular excitonic materials with improved spin qutrit properties.

2.
J Am Chem Soc ; 146(14): 9911-9919, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530990

RESUMO

Crystalline donor-acceptor (D-A) systems serve as an excellent platform for studying CT exciton creation, migration, and dissociation into free charge carriers for solar energy conversion. Donor-acceptor cocrystals have been utilized to develop an understanding of CT exciton formation in ordered organic solids; however, the strong electronic coupling of the D and A units can sometimes limit charge separation lifetimes due to their close proximity. Covalent D-A systems that preorganize specific donor-acceptor structures can assist in engineering crystal morphologies that promote long-lived charge separation to overcome this limitation. Here we investigate photogenerated CT exciton formation in a single crystal of a 2,5,8,11-tetraphenylperylene (PerPh4) donor to which four identical naphthalene-(1,4:5,8)-bis(dicarboximide) (NDI) electron acceptors are covalently attached at the para positions of the PerPh4 phenyl groups to yield PerPh4-NDI4. X-ray crystallography shows that the four NDIs pack pairwise into two distinct motifs. Two NDI acceptors of one PerPh4-NDI4 are positioned over the PerPh4 donors of adjacent PerPh4-NDI4 molecules with the donor and acceptor π-systems having a large dihedral angle between them, while the other two NDIs of PerPh4-NDI4 form xylene-NDI van der Waals π-stacks with the corresponding NDIs in adjacent PerPh4-NDI4 molecules. Upon selective photoexcitation of PerPh4 in the single crystal, CT exciton formation occurs in <300 fs yielding electron-hole pairs that live for more than ∼16 µs. This demonstrates the effectiveness of covalently linked D-A systems for engineering single crystal structures that promote efficient and long-lived charge separation for solar energy conversion.

3.
Phys Chem Chem Phys ; 23(42): 24200-24210, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693948

RESUMO

In this work, a series of eight similarly structured perinone chromophores were synthesized and photophysically characterized to elucidate the electronic and structural tunability of their excited state properties, including excited state redox potentials and fluorescence lifetimes/quantum yields. Despite their similar structure, these chromophores exhibited a broad range of visible absorption properties, quantum yields, and excited state lifetimes. In conjunction with static and time-resolved spectroscopies from the ultrafast to nanosecond time regimes, time-dependent computational modeling was used to correlate this behavior to the relationship between non-radiative decay and the energy-gap law. Additionally, the ground and excited state redox potentials were calculated and found to be tunable over a range of 1 V depending on the diamine or anhydride used in their synthesis (Ered* = 0.45-1.55 V; Eox* = -0.88 to -1.67 V), which is difficult to achieve with typical photoredox-active transition metal complexes. These diverse chromophores can be easily prepared, and with their range of photophysical tunability, will be valuable for future use in photofunctional applications.

4.
Inorg Chem ; 59(12): 8259-8271, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32491840

RESUMO

We present the synthesis, structural characterization, electronic structure calculations, and ultrafast and supra-nanosecond photophysical properties of a series of five Re(I) bichromophores exhibiting metal to ligand charge transfer (MLCT) excited states based on the general formula fac-[Re(N∧N)(CO)3(PNI-py)]PF6, where PNI-py is 4-piperidinyl-1,8-naphthalimidepyridine and N∧N is a diimine ligand (Re1-5), along with their corresponding model chromophores where 4-ethylpyridine was substituted for PNI-py (Mod1-5). The diimine ligands used include 1,10-phenanthroline (phen, 1), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bcp, 2), 4,4'-di-tert-butyl-2,2'-bipyridine (dtbb, 3), 4,4'-diethyl ester-2,2'-bipyridine (deeb, 4), and 2,2'-biquinoline (biq, 5). In these metal-organic bichromophores, structural modification of the diimine ligand resulted in substantial changes to the observed energy transfer efficiencies between the two chromophores as a result of the variation in 3MLCT excited-state energies. The photophysical properties and energetic pathways of the model chromophores were investigated in parallel to accurately track the changes that arose from introduction of the organic chromophore pendant on the ancillary ligand. All relevant photophysical and energy transfer processes were probed and characterized using time-resolved photoluminescence spectroscopy, ultrafast and nanosecond transient absorption spectroscopy, and time-dependent density functional theory calculations. Of the five bichromophores in this study, four (Re1-4) exhibited a thermal equilibrium between the 3PNI-py and the 3MLCT excited state, drastically extending the lifetimes of the parent model chromophores.

5.
J Phys Chem Lett ; 14(10): 2573-2579, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36880847

RESUMO

Singlet fission (SF) is a spin-allowed process in which a photogenerated singlet exciton down-converts into two triplet excitons. Perylene-3,4-dicarboximide (PMI) has singlet and triplet state energies of 2.4 and 1.1 eV, respectively; thus making SF slightly exoergic and providing triplet excitons that have sufficient energy to raise the efficiency of single-junction solar cells by reducing thermalization losses from hot excitons formed when absorbed photons have energies higher than the semiconductor bandgap. However, PMI SF in the solid state has not been studied previously. Here, we show that 2,5-diphenyl-N-(2-ethylhexyl)perylene-3,4-dicarboximide (dp-PMI) crystallizes into a slip-stacked intermolecular morphology favorable for SF. Transient absorption microscopy and spectroscopy show that dp-PMI SF occurs in ≤50 ps in both single crystals and polycrystalline thin films with a triplet yield of 150 ± 20%. Ultrafast SF in the solid state, the high triplet yield, and its photostability make dp-PMI an attractive candidate for SF-enhanced solar cells.

6.
Dalton Trans ; 50(37): 13086-13095, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581368

RESUMO

The steady-state and ultrafast to supra-nanosecond excited state dynamics of fac-[Re(NBI-phen)(CO)3(L)](PF6) (NBI-phen = 16H-benzo[4',5']isoquinolino[2',1':1,2]imidazo[4,5-f][1,10]phenanthrolin-16-one) as well as their respective models of the general molecular formula [Re(phen)(CO)3(L)](PF6) (L = PPh3 and CH3CN) has been investigated using transient absorption and time-gated photoluminescence spectroscopy. The NBI-phen containing molecules exhibited enhanced visible light absorption with respect to their models and a rapid formation (<6 ns) of the triplet ligand-centred (LC) excited state of the organic ligand, NBI-phen. These triplet states exhibit an extended excited state lifetime that enable the energized molecules to readily engage in triplet-triplet annihilation photochemistry.

7.
J Phys Chem Lett ; 11(13): 5092-5099, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32517474

RESUMO

Metal-free chromophores that efficiently generate triplet excited states represent promising alternatives with respect to transition metal-containing photosensitizers, such as those featuring metal-to-ligand charge transfer excited states. However, such molecular constructs have remained underexplored due to the unclear relationship(s) between molecular structure and efficient/rapid intersystem crossing. In this regard, we present a series of three thionated perinone chromophores serving as a newly conceived class of heavy metal-free triplet photosensitizers. We demonstrate that thionation of the lone C═O substituent in each highly fluorescent perinone imparts red-shifted absorbance bands that maintain intense extinction coefficients across the visible spectrum, as well as unusually efficient triplet excited state formation as inferred from the measured singlet O2 quantum yields at 1270 nm (ΦΔ = 0.78-1.0). Electronic structure calculations revealed the emergence of a low energy S1 (n → π*) excited state in the proximity of a slightly higher energy S2 (π → π*) excited state. The distinct character in each of the two lowest-lying singlet state manifolds resulted in the energetic inversion of the corresponding triplet excited states due to differences in electron exchange interactions. Rapid S1 → T1 intersystem crossing was thereby facilitated in this manner through spin-orbit coupling as predicted by the El Sayed rules. The lifetimes of the resultant triplet excited states persisted into the microsecond time regime, as measured by transient absorbance spectroscopy, enabling effective bimolecular triplet sensitization of some common polycyclic aromatic hydrocarbons. The synthetically facile interchange of a single O atom to an S atom in the investigated perinones resulted in marked changes to their photophysical properties, namely, conversion of dominant singlet state fluorescence in the former to long-lived triplet excited states in the latter. The combined results suggest a general strategy for accessing long-lived triplet excited states in organic chromophores featuring a lone C═O moiety residing within its structure, valuable for the design of metal-free triplet photosensitizers.

8.
J Phys Chem B ; 123(35): 7611-7627, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31405284

RESUMO

We present the synthesis, structural characterization, electronic structure calculations, and the ultrafast and supra-nanosecond photophysical properties of a series of five bichromophores of the general structural formula [Re(5-R-phen)(CO)3(dmap)](PF6), where R is a naphthalimide (NI), phen = 1,10-phenanthroline, and dmap is 4-dimethylaminopyridine. The NI chromophores were systematically modified at their 4-positions with -H (NI), -Br (BrNI), phenoxy (PONI), thiobenzene (PSNI), and piperidine (PNI), rendering a series of metal-organic bichromophores (Re1-Re5, respectively) featuring variability in the singlet and triplet energies in the pendant NI subunit. Five closely related organic chromophores as well as [Re(phen)(CO)3(dmap)](PF6) (Re6) were investigated in parallel to appropriately model the photophysical properties exhibited in the bichromophores. The excited state processes of all molecules in this study were elucidated using a combination of transient absorption spectroscopy and time-resolved photoluminescence (PL) spectroscopy, revealing the kinetics of the energy transfer processes occurring between the appended chromophores. The spectroscopic analysis was further supported by electronic structure calculations which identified the origin of many of the experimentally observed electronic transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA