RESUMO
Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6â mA mgNi -1 (6.3â times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.
RESUMO
The alkaline hydrogen oxidation reaction (HOR) involves the coupling of adsorbed hydrogen (Had) and hydroxyl (OHad) species and is thus orders of magnitude slower than that in acid media. According to the Sabatier principle, developing electrocatalysts with appropriate binding energy for both intermediates is vital to accelerating the HOR though it is still challenging. Herein, we propose an unconventional bilateral compressive strained Ni-Ir interface (Ni-Ir(BCS)) as efficient synergistic HOR sites. Density functional theory (DFT) simulations reveal that the bilateral compressive strain effect leads to the appropriate adsorption for both Had and OHad, enabling their coupling thermodynamically spontaneous and kinetically preferential. Such Ni-Ir(BCS) is experimentally achieved by embedding sub-nanometer Ir clusters in graphene-loaded high-density Ni nanocrystals (Ni-Ir(BCS)/G). As predicted, it exhibits a HOR mass activity of 7.95 and 2.88 times those of commercial Ir/C and Pt/C together with much enhanced CO tolerance, respectively, ranking among the most active state-of-the-art HOR catalysts. These results provide new insights into the rational design of advanced electrocatalysts involving coordinated adsorption and activation of multiple reactants.
RESUMO
The severe performance degradation of low-temperature hydrogen fuel cells upon exposure to trace amounts of carbon monoxide (CO) impurities in reformate hydrogen fuels is one of the challenges that hinders their commercialization. Despite significant efforts that have been made, the CO-tolerance performance of electrocatalysts for the hydrogen oxidation reaction (HOR) is still unsatisfactory. This Perspective discusses the path forward for the rational design of CO-tolerant HOR electrocatalysts. The fundamentals of the CO-tolerant mechanisms on commercialized platinum group metal (PGM) electrocatalysts via either promoting CO electrooxidation or weakening CO adsorption are provided, and comprehensive discussions based on these strategies are presented with typical examples. Given the recent progress, some emerging strategies, including blocking CO diffusion with a barrier layer and developing non-PGM HOR catalysts, are also discussed. We conclude with a discussion of the strengths and limitations of these strategies along with the perspectives of the major challenges and opportunities for future research on CO-tolerant HOR electrocatalysts.