Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurol ; 23(1): 317, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674139

RESUMO

Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.


Assuntos
Curcumina , Neuropatias Diabéticas , Humanos , Ansiedade , Transtornos de Ansiedade
2.
J Nanobiotechnology ; 20(1): 135, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292020

RESUMO

BACKGROUND: Exosomes derived from stem cells have been widely studied for promoting regeneration and reconstruction of multiple tissues as "cell-free" therapies. However, the applications of exosomes have been hindered by limited sources and insufficient therapeutic potency. RESULTS: In this study, a stem cell-mediated gene therapy strategy is developed in which mediator mesenchymal stem cells are genetically engineered by bone morphogenetic protein-2 gene to produce exosomes (MSC-BMP2-Exo) with enhanced bone regeneration potency. This effect is attributed to the synergistic effect of the content derived from MSCs and the up-regulated BMP2 gene expression. The MSC-BMP2-Exo also present homing ability to the injured site. The toxic effect of genetical transfection vehicles is borne by mediator MSCs, while the produced exosomes exhibit excellent biocompatibility. In addition, by plasmid tracking, it is interesting to find a portion of plasmid DNA can be encapsulated by exosomes and delivered to recipient cells. CONCLUSIONS: In this strategy, engineered MSCs function as cellular factories, which effectively produce exosomes with designed and enhanced therapeutic effects. The accelerating effect in bone healing and the good biocompatibility suggest the potential clinical application of this strategy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Regeneração Óssea , Exossomos/metabolismo , Terapia Genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco
3.
Ann Rheum Dis ; 79(5): 635-645, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156705

RESUMO

OBJECTIVES: In this study, we aim to determine the effect of metformin on osteoarthritis (OA) development and progression. METHODS: Destabilisation of the medial meniscus (DMM) surgery was performed in 10-week-old wild type and AMP-activated protein kinase (AMPK)α1 knockout (KO) mice. Metformin (4 mg/day in drinking water) was given, commencing either 2 weeks before or 2 weeks after DMM surgery. Mice were sacrificed 6 and 12 weeks after DMM surgery. OA phenotype was analysed by micro-computerised tomography (µCT), histology and pain-related behaviour tests. AMPKα1 (catalytic alpha subunit of AMPK) expression was examined by immunohistochemistry and immunofluorescence analyses. The OA phenotype was also determined by µCT and MRI in non-human primates. RESULTS: Metformin upregulated phosphorylated and total AMPK expression in articular cartilage tissue. Mild and more severe cartilage degeneration was observed at 6 and 12 weeks after DMM surgery, evidenced by markedly increased Osteoarthritis Research Society International scores, as well as reduced cartilage areas. The administration of metformin, commencing either before or after DMM surgery, caused significant reduction in cartilage degradation. Prominent synovial hyperplasia and osteophyte formation were observed at both 6 and 12 weeks after DMM surgery; these were significantly inhibited by treatment with metformin either before or after DMM surgery. The protective effects of metformin on OA development were not observed in AMPKα1 KO mice, suggesting that the chondroprotective effect of metformin is mediated by AMPK signalling. In addition, we demonstrated that treatment with metformin could also protect from OA progression in a partial medial meniscectomy animal model in non-human primates. CONCLUSIONS: The present study suggests that metformin, administered shortly after joint injury, can limit OA development and progression in injury-induced OA animal models.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Cartilagem Articular/efeitos dos fármacos , Metformina/farmacologia , Osteoartrite/tratamento farmacológico , Regulação para Cima/genética , Animais , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Hipoglicemiantes/farmacologia , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Knockout , Camundongos Obesos , Osteoartrite/patologia , Distribuição Aleatória , Sensibilidade e Especificidade , Transdução de Sinais/genética
4.
Small ; 14(9)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29251423

RESUMO

Photodynamic therapy (PDT) utilizing light-induced reactive oxygen species (ROS) is a promising alternative to combat antibiotic-resistant bacteria and biofilm. However, the photosensitizer (PS)-modified surface only exhibits antibacterial properties in the presence of light. It is known that extended photoirradiation may lead to phototoxicity and tissue hypoxia, which greatly limits PDT efficiency, while ambient pathogens also have the opportunity to attach to biorelevant surfaces in medical facilities without light. Here, an antimicrobial film composed of black phosphorus nanosheets (BPSs) and poly (4-pyridonemethylstyrene) endoperoxide (PPMS-EPO) to control the storage and release of ROS reversibly is introduced. BPS, as a biocompatible PS, can produce high singlet oxygen under the irradiation of visible light of 660 nm, which can be stably stored in PPMS-EPO. The ROS can be gradually thermally released in the dark. In vitro antibacterial studies demonstrate that the PPMS-EPO/BPS film exhibits a rapid disinfection ability with antibacterial rate of 99.3% against Escherichia coli and 99.2% against Staphylococcus aureus after 10 min of irradiation. Even without light, the corresponding antibacterial rate reaches 76.5% and 69.7%, respectively. In addition, incorporating PPMS significantly improves the chemical stability of the BPS.


Assuntos
Fósforo/química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/química , Nanoestruturas/química , Fotoquimioterapia , Polímeros/química
5.
J Mater Sci Mater Med ; 27(5): 91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26975748

RESUMO

Health of human beings is subjected to severe threats from the spread of harmful bacteria and the implant-associated infection remains a serious problem in clinic. In this study, a copper-bearing antibacterial titanium alloy, Ti-5Cu, has been developed for dental and orthopedic implant applications. The microstructure, mechanical property, electrochemical corrosion behavior, in vitro antibacterial performance, cytocompatibility and hemocompatibility of the alloy are systematically investigated. The results reveal that the Ti-5Cu alloy which consists of α-phase matrix and intermetallic compound Ti2Cu not only possesses strong antibacterial activity against both E. coli and S. aureus, but also exhibits better mechanical properties than the commercial pure titanium. It is confirmed that the release of trace amount of Cu ions from the alloy plays an important role in killing bacteria. In spite of the ion release, Ti-5Cu alloy still reveals excellent corrosion resistance. Moreover, good cytocompatibility and superior hemocompatibility make Ti-5Cu alloy to be a potential solution that could prevent the peri-implant infection in dental and orthopaedic applications.


Assuntos
Cobre/química , Titânio/química , Células 3T3 , Ligas/química , Animais , Antibacterianos , Plaquetas/fisiologia , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Técnicas Eletroquímicas , Escherichia coli/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Teste de Materiais , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Estresse Mecânico
6.
J Mater Sci Mater Med ; 26(3): 147, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25764082

RESUMO

Numerous modification methods have been reported to enhance the corrosion resistance of magnesium with positive results. However, little attention has been paid on their impact on micro-environment, particularly the ion concentration and local pH value. In this study, two different coatings were prepared on magnesium, one with porous micro-arc oxidation (MAO) coating alone, and the other with additional polymer polyhydroxybutyrate (PHB) membrane using spinning technique. Their in vitro corrosional and biological behaviors were investigated and compared. Both coatings were found to reduce the degradation rate of magnesium, but an additionally deposited PHB membrane was superior to MAO-coated magnesium since it could produce a micro-environment with preferable local pH value and ion concentration for osteoblast proliferation. Our study suggests that micro-environment should be another critical issue in evaluation of a modification method for orthopaedic implants.


Assuntos
Materiais Revestidos Biocompatíveis , Magnésio/química , Membranas Artificiais , Polímeros/química , Células 3T3 , Animais , Técnicas In Vitro , Camundongos , Oxirredução
7.
Macromol Rapid Commun ; 35(5): 574-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24347343

RESUMO

In this article, taurine, one of the small biomolecules associated with bone metabolism, is firstly utilized to induce the fabrication of nano-architectured conducting polypyrrole (NCPPy) on biomedical titanium in diverse pH values of phosphate buffer solution (PBS). Accordingly, the possible mechanism for the fabrication of NCPPy is proposed, which is dependent on the states of polytaurine from the polymerization of taurine, i.e., the inability of forming polytaurine and unordered restricted space results in taurine-incorporated and polytaurine-incorporated tightly packed nanoparticles (pH 6.2 and 8.0), respectively, and however, ordered restricted space constructed by polytaurine chains induces the fabrication of polytaurine-incorporated nanopillars (pH 6.8) and polytaurine-incorporated nanowire networks (pH 7.4).


Assuntos
Condutividade Elétrica , Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Pirróis/química , Taurina/química , Titânio/química , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
8.
BMC Musculoskelet Disord ; 15: 319, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25262001

RESUMO

BACKGROUND: The precise etiology of knee osteoarthritis (KOA) pain remains highly controversial and there is no known effective treatment. Due to the known and suggested effects of neuropeptide Y (NPY) on pain, we have sought to investigate the relationship between the concentration of NPY in synovial fluid of knee, pain of KOA, and structural severity of KOA. METHODS: One hundred KOA patients and twenty healthy participants (control group) were recruited. The pain and the radiographic grade of KOA were assessed separately by Hideo Watanabe's pain score and Tomihisa Koshino's scoring system. Synovial fluid of knee from all participants was collected with arthrocentesis. Radioimmunoassay was used to examine the concentration of NPY in synovial fluid of knee. RESULTS: Concentrations of NPY in synovial fluid were significantly higher in KOA patients (124.7 ± 33.4 pg/mL) compared with controls (64.8 ± 26.3 pg/mL) (p = 0.0297). According to Hideo Watanabe's pain score, 100 KOA patients were divided into 5 subgroups: no pain (n = 12), mild pain (n = 25), moderate pain (n = 37), strong pain (n = 19) and severe pain (n = 7). Within the KOA group, significantly higher concentrations of NPY were found in each subgroup as pain intensified (no pain 81.4 ± 11.7 pg/mL, mild pain 99.1 ± 23.2 pg/mL, moderate pain 119.9 ± 31.5 pg/mL, strong pain 171.2 ± 37.3 pg/mL and severe pain 197.3 ± 41.9 pg/mL). Meanwhile, according to Tomihisa Koshino's scoring system, 100 KOA patients were divided into 3 subgroups: early stage (n = 30), middle stage (n = 53), advanced stage (n = 17). Concentrations of NPY in middle and advanced stage groups of KOA patients were significant higher than early stage group of KOA patients (early stage 96.4 ± 27.1 pg/mL, middle stage 153.3 ± 16.9 pg/mL, advanced stage 149.5 ± 36.7 pg/mL) (p = 0.0163, p = 0.0352). Concentrations of NPY in advanced stage group of KOA patients has no significant difference compare with middle stage group of KOA patients (p = 0. 2175). CONCLUSIONS: This study demonstrated the presence and variation of concentrations of NPY in the KOA joint fluid, suggesting a role for NPY as a putative regulator of pain transmission and perception in KOA pain.


Assuntos
Neuropeptídeo Y/metabolismo , Osteoartrite do Joelho/metabolismo , Medição da Dor/métodos , Dor/metabolismo , Líquido Sinovial/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/diagnóstico , Dor/diagnóstico
9.
ACS Appl Mater Interfaces ; 16(28): 35912-35924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976770

RESUMO

The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 µm) and polystyrene (0.4 µm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.


Assuntos
Diferenciação Celular , Coloides , Epigênese Genética , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Coloides/química , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Adesão Celular/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Dióxido de Silício/química , Poliestirenos/química , Proliferação de Células/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
10.
Colloids Surf B Biointerfaces ; 236: 113805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422666

RESUMO

Bone implantation inevitably causes damage to surrounding vasculature, resulting in a hypoxic microenvironment that hinders bone regeneration. Although titanium (Ti)-based devices are widely used as bone implants, their inherent bioinert surface leads to poor osteointegration. Herein, a strontium peroxide (SrO2)-decorated Ti implant, Ti_P@SrO2, was constructed through coating with poly-L-lactic acid (PLLA) to alleviate the hypoxic microenvironment and transform the bioinert surface of the implant into a bioactive surface. PLLA degradation resulted in an acidic microenvironment and the release of SrO2 nanoparticles. The acidic microenvironment then accelerated the decomposition of SrO2, resulting in the release of O2 and Sr ions. O2 released from Ti_P@SrO2 can alleviate the hypoxic microenvironment, thus enhancing cell proliferation in an O2-insufficient microenvironment. Furthermore, under hypoxic and normal microenvironments, Ti_P@SrO2 enhanced alkaline phosphatase activity and bone-related gene expression in C3H10T1/2 cells with the continuous release of Sr ions. Meanwhile, Ti_P@SrO2 suppressed M1 polarization and promoted M2 polarization of bone marrow-derived monocytes under hypoxic and normal conditions. Furthermore, in a rat implantation model, the implant enhanced new bone formation and improved osteointegration after modification with SrO2. In summary, the newly designed O2- and Sr ion-releasing Ti implants are promising for applications in bone defects.


Assuntos
Próteses e Implantes , Titânio , Animais , Ratos , Titânio/farmacologia , Regeneração Óssea , Osso e Ossos , Íons , Osteogênese , Propriedades de Superfície , Estrôncio/farmacologia , Osseointegração
11.
Regen Biomater ; 11: rbad115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313824

RESUMO

Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.

12.
Nat Commun ; 15(1): 3565, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670999

RESUMO

Bioprinting that can synchronously deposit cells and biomaterials has lent fresh impetus to the field of tissue regeneration. However, the unavoidable occurrence of cell damage during fabrication process and intrinsically poor mechanical stability of bioprinted cell-laden scaffolds severely restrict their utilization. As such, on basis of heart-inspired hollow hydrogel-based scaffolds (HHSs), a mechanical-assisted post-bioprinting strategy is proposed to load cells into HHSs in a rapid, uniform, precise and friendly manner. HHSs show mechanical responsiveness to load cells within 4 s, a 13-fold increase in cell number, and partitioned loading of two types of cells compared with those under static conditions. As a proof of concept, HHSs with the loading cells show an enhanced regenerative capability in repair of the critical-sized segmental and osteoporotic bone defects in vivo. We expect that this post-bioprinting strategy can provide a universal, efficient, and promising way to promote cell-based regenerative therapy.


Assuntos
Bioimpressão , Regeneração Óssea , Hidrogéis , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Hidrogéis/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Humanos , Osso e Ossos , Camundongos , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis/química , Osteoporose/terapia
13.
Mater Today Bio ; 26: 101107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38952538

RESUMO

Smart dressings integrated with bioelectronics have attracted considerable attention and become promising solutions for skin wound management. However, due to the mechanical distinction between human body and the interface of electronics, previous smart dressings often suffered obvious degradation in electrical performance when attached to the soft and curvilinear wound sites. Here, we report a stretchable dressing integrated with temperature and pH sensor for wound status monitoring, as well as an electrically controlled drug delivery system for infection treatment. The wound dressing was featured with the deployment of liquid metal for seamless connection between rigid electrical components and gold particle-based electrodes, achieving a stretchable soft-hard interface. Stretching tests showed that both the sensing system and drug delivery system exhibited good stretchability and long-term stable conductivity with the resistance change rate less than 6 % under 50 % strain. Animal experiments demonstrated that the smart dressing was capable of detecting bacterial infection via the biomarkers of temperature and pH value and the infection factors of wound were significantly improved with therapy through electrically controlled antibiotics releasing. This proof-of-concept prototype has potential to significantly improve management of the wound, especially those with dynamic strain.

14.
Bioact Mater ; 40: 148-167, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38962659

RESUMO

Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis is a severe challenge in orthopedics. While antibiotic-loaded bone cement is a standardized therapeutic approach for S. aureus osteomyelitis, it falls short in eradicating Staphylococcus abscess communities (SACs) and bacteria within osteocyte-lacuna canalicular network (OLCN) and repairing bone defects. To address limitations, we developed a borosilicate bioactive glass (BSG) combined with ferroferric oxide (Fe3O4) magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities. We conducted comprehensive assessments of the osteoinductive, immunomodulatory, antibacterial properties, and thermal response of this scaffold, with or without an alternating magnetic field (AMF). Utilizing a well-established implant-related S. aureus tibial infection rabbit model, we evaluated its antibacterial performance in vivo. RNA transcriptome sequencing demonstrated that BSG + 5%Fe3O4 enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs. Notably, BSG + 5%Fe3O4 upregulated gene expression of NOD-like receptor and TNF pathway in MSCs, alongside increased the expression of osteogenic factors (RUNX2, ALP and OCN) in vitro. Flow cytometry on macrophage exhibited a polarization effect towards M2, accompanied by upregulation of anti-inflammatory genes (TGF-ß1 and IL-1Ra) and downregulation of pro-inflammatory genes (IL-6 and IL-1ß) among macrophages. In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG + 5%Fe3O4 + AMF at 42 days. Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42, along with new bone formation, signifying effective control of S. aureus osteomyelitis. Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.

15.
Nat Commun ; 15(1): 1587, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383668

RESUMO

The power of three-dimensional printing in designing personalized scaffolds with precise dimensions and properties is well-known. However, minimally invasive implantation of complex scaffolds is still challenging. Here, we develop amphiphilic dynamic thermoset polyurethanes catering for multi-material four-dimensional printing to fabricate supportive scaffolds with body temperature-triggered shape memory and water-triggered programmable deformation. Shape memory effect enables the two-dimensional printed pattern to be fixed into temporary one-dimensional shape, facilitating transcatheter delivery. Upon implantation, the body temperature triggers shape recovery of the one-dimensional shape to its original two-dimensional pattern. After swelling, the hydrated pattern undergoes programmable morphing into the desired three-dimensional structure because of swelling mismatch. The structure exhibits unusual soft-to-stiff transition due to the water-driven microphase separation formed between hydrophilic and hydrophobic chain segments. The integration of shape memory, programmable deformability, and swelling-stiffening properties makes the developed dynamic thermoset polyurethanes promising supportive void-filling scaffold materials for minimally invasive implantation.


Assuntos
Hidrogéis , Poliuretanos , Hidrogéis/química , Água , Impressão Tridimensional
16.
Nat Commun ; 15(1): 3769, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704393

RESUMO

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Assuntos
Adipócitos , Medula Óssea , Leptina , Osteogênese , Receptores de Estrogênio , Animais , Osteogênese/genética , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Leptina/metabolismo , Leptina/genética , Medula Óssea/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Receptor ERRalfa Relacionado ao Estrogênio , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células da Medula Óssea/metabolismo , Camundongos Knockout
17.
Chemphyschem ; 14(17): 3891-4, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24151250

RESUMO

Conducting polypyrrole (PPy) nanotube arrays, nanotube networks and irregular films are deposited on biomedical titanium. By in situ application of weak periodic potentials, the nanostructured conducting polymers undergo a reversible switch in wettability, which is a redox process of dopant molecules (as hydrophilic groups) immobilized and de-immobilized on the surface of the conducting polymers.


Assuntos
Materiais Biocompatíveis/química , Nanotubos/química , Polímeros/química , Pirróis/química , Titânio/química , Condutividade Elétrica , Nanotubos/ultraestrutura , Oxirredução , Molhabilidade
18.
Biomimetics (Basel) ; 8(1)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975320

RESUMO

The biological and mechanical functions of bone rely critically on the inorganic constituent, which can be termed as bone apatite nanocrystal. It features a hydroxylapatite-like crystalline structure, complex chemical compositions (e.g., carbonate-containing and calcium- and hydroxyl-deficient), and fine geometries and properties. The long research with vast literature across broad spectra of disciplines and fields from chemistry, crystallography, and mineralogy, to biology, medical sciences, materials sciences, mechanics, and engineering has produced a wealth of knowledge on the bone apatite nanocrystal. This has generated significant impacts on bioengineering and industrial engineering, e.g., in developing new biomaterials with superior osteo-inductivities and in inspiring novel strong and tough composites, respectively. Meanwhile, confusing and inconsistent understandings on the bone mineral constituent should be addressed to facilitate further multidisciplinary progress. In this review, we present a mineralogical account of the bone-related ideal apatite mineral and then a brief historical overview of bone mineral research. These pave the road to understanding the bone apatite nanocrystal via a material approach encompassing crystalline structure, diverse chemical formulae, and interesting architecture and properties, from which several intriguing research questions emerge for further explorations. Through providing the classical and latest findings with decent clearness and adequate breadth, this review endeavors to promote research advances in a variety of related science and engineering fields.

19.
J Mol Histol ; 54(6): 725-738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676534

RESUMO

Neuroinflammation is associated with the pathophysiology of depression. The molecular mechanism of depressive-like behavior caused by sepsis-associated encephalopathy (SAE) is incompletely understood. J147 (an analog of curcumin) has been reported to improve memory and has neuroprotective activity, but its biological function in the depressive-like behavior observed in SAE is not known. We investigated the effects of J147 on lipopolysaccharide (LPS)-induced neuroinflammatory, depressive-like behaviors, and the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signal pathway in the mouse hippocampus and microglia (BV2 cells). The forced-swimming test (FST) and tail-suspension test (TST) were undertaken for assessment of depressive-like behaviors. Expression of the proinflammatory genes interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were measured using RT-qPCR and ELISA. Microglia activation was detected using immunofluorescence staining. The TLR4/NF-κB signaling pathway was studied using western blotting and immunofluorescence staining. J147 pretreatment markedly downregulated expression of IL-6, IL-1ß, and TNF-α, and the mean fluorescence intensity of ionized calcium-binding adapter protein-1 in microglia. J147 restrained LPS-induced nuclear translocation of nuclear factor-kappa B (NF-κB), inhibitor of nuclear factor kappa B (IκB) degradation, and TLR4 activation in microglia. J147 administration inhibited bodyweight loss, mortality, microglia activation, and depressive-like behaviors in LPS-treated mice. In conclusion, J147 ameliorated the sepsis-induced depressive-like behaviors induced by neuroinflammation through attenuating the TLR4/NF-κB signaling pathway in microglia.


Assuntos
NF-kappa B , Sepse , Camundongos , Animais , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sepse/complicações , Sepse/metabolismo , Microglia/metabolismo
20.
Bone Res ; 11(1): 40, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37482549

RESUMO

Numerous small-molecule amines (SMAs) play critical roles in maintaining bone homeostasis and promoting bone regeneration regardless of whether they are applied as drugs or biomaterials. On the one hand, SMAs promote bone formation or inhibit bone resorption through the regulation of key molecular signaling pathways in osteoblasts/osteoclasts; on the other hand, owing to their alkaline properties as well as their antioxidant and anti-inflammatory features, most SMAs create a favorable microenvironment for bone homeostasis. However, due to a lack of information on their structure/bioactivity and underlying mechanisms of action, certain SMAs cannot be developed into drugs or biomaterials for bone disease treatment. In this review, we thoroughly summarize the current understanding of SMA effects on bone homeostasis, including descriptions of their classifications, biochemical features, recent research advances in bone biology and related regulatory mechanisms in bone regeneration. In addition, we discuss the challenges and prospects of SMA translational research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA