RESUMO
Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) is the active intermediate metabolite of benzo[a]pyrene (B[a]P) and is considered the ultimate immunotoxicant. The neuroendocrine immunoregulatory network of bivalves is affected under pollutant stress. Besides, bivalves are frequently affected by pollutants in marine environments, yet the combined effects of neuroendocrine factors and detoxification metabolites on bivalves under pollutant stress and the signal pathways that mediate this immunoregulation are not well understood. Therefore, we incubated the hemocytes of Chlamys farreri with the neuroendocrine factor noradrenaline (NA) and the B[a]P detoxification metabolite BPDE, alone or in combination, to examine the immunotoxic effects of NA and BPDE on the hemocytes in C. farreri. Furthermore, the effects of NA and BPDE on the hemocyte signal transduction pathway were investigated by assessing potential downstream targets. The results revealed that NA and BPDE, alone or in combination, resulted in a significant decrease in phagocytic activity, bacteriolytic activity and the total hemocyte count. In addition, the immunotoxicity induced by BPDE was further exacerbated by co-treatment with NA, and the two showed synergistic effects. Analysis of signaling pathway factors showed that NA activated G proteins by binding to α-AR, which transmitted information to the Ca2+-NF-κB signaling pathway to regulate the expression of phagocytosis-associated proteins and regulated cytokinesis through the cAMP signaling pathway. BPDE could activate PTK and affect phagocytosis and cytotoxicity proteins through Ca2+-NF-κB signal pathway, also affect the regulation of phagocytosis and cytotoxicity by inhibiting the AC-cAMP-PKA pathway to down-regulate the expression of NF-κB and CREB. In addition, BPDE and NA may affect the immunity of hemocytes by down-regulating phagocytosis-related proteins through inhibition of the lectin pathway, while regulating the expression of cytotoxicity-related proteins through the C-type lectin. In summary, immune parameters were suppressed through Ca2+ and cAMP dependent pathways exposed to BPDE and the immunosuppressive effects were enhanced by the neuroendocrine factor NA.
Assuntos
Poluentes Ambientais , Pectinidae , Animais , Benzo(a)pireno , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Hemócitos/metabolismo , NF-kappa B , Norepinefrina , Pectinidae/metabolismoRESUMO
The advancement of the Penaeus vannamei industry in a sustainable manner necessitates the creation of eco-friendly and exceptionally effective feed additives. To achieve this, 720 similarly-sized juvenile shrimp (0.88 ± 0.02 g) were randomly divided into four groups in this study, with each group consisting of three replicates, each tank (400 L) containing 60 shrimp. Four experimental diets were formulated by adding 0, 500, 1000, and 1500 mg kg-1 glycerol monolaurate (GML) to the basal diet, and the feeding trial lasted for 42 days. Subsequently, a 72-h White Spot Syndrome Virus (WSSV) challenge test was conducted. Polynomial orthogonal contrasts analysis revealed that with the increase in the concentration of GML, those indicators related to growth, metabolism and immunity, exhibit linear or quadratic correlations (P < 0.05). The results indicate that the GML groups exhibited a significant improvement in the shrimp weight gain rate, specific growth rate, and a reduction in the feed conversion ratio (P < 0.05). Furthermore, the GML groups promoted the lipase activity and reduced lipid content of the shrimp, augmented the expression of triglyceride and fatty acid decomposition-related genes and lowered the levels of plasma triglycerides (P < 0.05). GML can also enhanced the humoral immunity of the shrimp by activating the Toll-like receptor and Immune deficiency immune pathways, improved the phagocytic capacity and antibacterial ability of shrimp hemocytes. The challenge test revealed that GML significantly reduced the mortality of the shrimp compared to control group. The 16S rRNA sequencing indicates that the GML group can increases the abundance of beneficial bacteria. However, 1500 mg kg-1 GML adversely affected the stability of the intestinal microbiota, significantly upregulating intestinal antimicrobial peptide-related genes and tumor necrosis factor-alpha levels (P < 0.05). In summary, 1000 mg kg-1 GML was proven to enhance the growth performance, lipid absorption and metabolism, humoral immune response, and gut microbiota condition of P. vannamei, with no negative physiological effects.
Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Lauratos , Metabolismo dos Lipídeos , Monoglicerídeos , Penaeidae , Animais , Penaeidae/imunologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/efeitos dos fármacos , Penaeidae/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Dieta/veterinária , Ração Animal/análise , Lauratos/farmacologia , Lauratos/administração & dosagem , Monoglicerídeos/administração & dosagem , Monoglicerídeos/farmacologia , Suplementos Nutricionais/análise , Distribuição Aleatória , Imunidade Inata/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/fisiologia , Relação Dose-Resposta a Droga , Digestão/efeitos dos fármacosRESUMO
Benzo[a]pyrene (B[a]P), a ubiquitous contamination in the marine environments, has the potential to impact the immune response of bivalves by affecting the hemocyte parameters, especially total hemocyte count (THC). THC is mainly determined by haematopoietic mechanisms and apoptosis of hemocytes. Many studies have found that B[a]P can influence the proliferation and differentiation of hemocytes. However, the link between the toxic mechanisms of haematopoietic and environmental pollutants is not explicitly stated. This study is to investigate the toxic effects of B[a]P on haematopoietic mechanisms in C. farreri. Through the tissue expression distribution experiment and EDU assay, gill is identified as a potential haematopoietic tissue in C. farreri. Subsequently, the scallops were exposed to B[a]P (0.05, 0.5, 5 µg/L) for 1d, 3d, 6d, 10d and 15d. Then BPDE content, DNA damage, gene expression of haematopoietic factors and haematopoietic related pathways were determined in gill and hemocytes. The results showed that the expression of CDK2 was significantly decreased under B[a]P exposure through three pathways: RYR/IP3-calcium, BPDE-CHK1 and Notch pathway, resulting in cell cycle arrest. In addition, B[a]P also significantly reduced the number of proliferating hemocytes by affecting the Wnt pathway. Meanwhile, B[a]P can significantly increase the content of ROS, causing a downregulation of FOXO gene expression. The gene expression of Notch pathway and ERK pathway was also detected. The present study suggested that B[a]P disturbed differentiation by multiple pathways. Furthermore, the expression of SOX11 and CD9 were significantly decreased, which directly indicated that differentiation of hemocytes was disturbed. In addition, phagocytosis, phenoloxidase activity and THC were also significant decreased. In summary, the impairment of haematopoietic activity in C. farreri further causes immunotoxicity under B[a]P exposure. This study will improve our understanding of the immunotoxicity mechanism of bivalve under B[a]P exposure.
Assuntos
Benzo(a)pireno , Pectinidae , Animais , Benzo(a)pireno/toxicidade , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Hemócitos/fisiologiaRESUMO
A 56-day culture trial was conducted to evaluate the effects of dietary dihydromyricetin (DMY) on growth performance, antioxidant capacity, immune response and intestinal microbiota of shrimp (Litopenaeus vannamei). 840 healthy shrimp (1.60 ± 0.21 g) in total were fed with four different levels of DMY diets at 0 (Control), 100 (D1), 200 (D2), and 300 (D3) mg/kg, respectively. Samples were collected after the culture trial, and then, a 7-day challenge experiment against Vibrio parahaemolyticus was conducted. The results demonstrated that DMY significantly enhanced the activity of protease, amylase and lipase as well as the expression of lipid and protein transport-related genes (P < 0.05). The results of plasma lipid parameters indicated that DMY reduced lipid deposition, manifested by significantly (P < 0.05) decreased plasma total cholesterol (T-CHO), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C). The expression of genes involved in fatty acid ß-oxidation and triglyceride catabolism was significantly up-regulated (P < 0.05), and genes involved in triglyceride synthesis were significantly down-regulated in DMY groups when compared to control group (P < 0.05). Moreover, dietary DMY also significantly (P < 0.05) increased the total antioxidant capacity (T-AOC), antioxidant enzymes activity and glutathione (GSH) content of shrimp, and a significant increase of total hemocytes count (THC), phagocytic rate (PR), antibacterial activity (AA) and bacteriolytic activity (BA) was observed in DMY groups (P < 0.05). The addition of DMY to the diet significantly augmented immune response by up-regulating the expression of genes related to toll-like receptors (Toll) signaling pathway, immune deficiency (IMD) signaling pathway and intestinal mucin. Furthermore, dietary DMY could modulate the composition and abundance of intestinal microbiota. In conclusion, DMY showed promising potential as a functional feed additive for shrimp to improve the growth performance and physiological health.
Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Imunidade Inata , Ração Animal/análise , Dieta/veterinária , Glutationa , Triglicerídeos , Colesterol , LipídeosRESUMO
Gonadotropin-releasing hormone (GnRH) plays a key role in the control of the reproductive axis in vertebrates, however, little is known about its function in reproductive endocrine regulation in molluscs. In the present study, RNA-seq was used to construct transcriptomes of Ruditapes philippinarum testis and ovaries of control and GnRH suppressed individuals using RNA interference. GnRH suppression caused 112 and 169 enriched KEGG pathways in testis and ovary, with 92 pathways in common in both comparisons. The most enriched KEGG pathways occurred in the "Oxidative phosphorylation", "Dorso-ventral axis formation", "Thyroid hormone synthesis" and "Oxytocin signaling pathway" etc. A total of 1838 genes in testis and 358 genes in ovaries were detected differentially expressed in GnRH suppressed clams. Among the differentially expressed genes, a suit of genes related to regulation of steroid hormones synthesis and gonadal development, were found in both ovary and testis with RNAi of GnRH. These results suggest that GnRH may play an important role in reproductive function in bivalves. This study provides a preliminary basis for studying the function and regulatory mechanism of GnRH in bivalves.
Assuntos
Bivalves , Hormônio Liberador de Gonadotropina , Animais , Feminino , Masculino , Bivalves/genética , Bivalves/metabolismo , Regulação para Baixo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Interferência de RNA , TranscriptomaRESUMO
To unveil the adaptation of Litopenaeus vannamei to elevated ambient ammonia-N, crustacean hyperglycaemic hormone (CHH) was knocked down to investigate its function in glucose metabolism pathway under ammonia-N exposure. When CHH was silenced, haemolymph glucose increased significantly during 3-6 h, decreased significantly during 12-48 h and recovered to the control groups' level at 72 h. After CHH knock-down, dopamine (DA) contents reduced significantly during 3-24 h, which recovered after 48 h. Besides, the expressions of guanylyl cyclase (GC) and DA1R in the hepatopancreas decreased significantly, while DA4R increased significantly. Correspondingly, the contents of cyclic AMP (cAMP), cyclic GMP (cGMP) and diacylglycerol (DAG) and the expressions of protein kinase A (PKA), protein kinase G (PKG), AMP active protein kinase α (AMPKα) and AMPKγ were significantly down-regulated, while the levels of protein kinase C (PKC) and AMPKß were significantly up-regulated. The expressions of cyclic AMP response element-binding protein (CREB) and GLUT2 decreased significantly, while GLUT1 increased significantly. Moreover, glycogen content, glycogen synthase and glycogen phosphorylase activities in hepatopancreas and muscle were significantly increased. Furthermore, the levels of key enzymes hexokinase, pyruvate kinase and phosphofructokinase in glycolysis (GLY), rate-limiting enzymes citrate synthase in tricarboxylic acid and critical enzymes phosphoenolpyruvate carboxykinase, fructose diphosphate and glucose-6-phosphatase in gluconeogenesis (GNG) were significantly decreased in hepatopancreas. These results suggest that CHH affects DA and then they affect their receptors to transmit glucose metabolism signals into the hepatopancreas of L. vannamei under ammonia-N stress. CHH acts on the cGMP-PKG-AMPKα-CREB pathway through GC, and CHH affects DA to influence cAMP-PKA-AMPKγ-CREB and DAG-PKC-AMPKß-CREB pathways, thereby regulating GLUT, inhibiting glycogen metabolism and promoting GLY and GNG. This study contributes to further understand glucose metabolism mechanism of crustacean in response to environmental stress.
Assuntos
Hiperglicemia , Penaeidae , Amônia , Animais , Proteínas de Artrópodes , Glucose/metabolismo , Glicogênio/metabolismo , Hormônios de Invertebrado , Proteínas do Tecido Nervoso , Nitrogênio/metabolismo , Interferência de RNARESUMO
To explore the immune function of C-type lectin in shrimp, one recombinant C-type lectin (LvLec) was injected into Litopenaeus vannamei. There were four treatments in the experiment: saline group (as control group), recombinant C-type lectin group (LvLec, 1 mg mL-1), Vibrio harveyi group (V. harveyi, 106 cfu mL-1) and recombinant C-type lectin combined with Vibrio harveyi group (LvLec + V. harveyi, 1 mg mL-1 + 106 cfu mL-1). The sampling time was set at 0, 3, 6, 9, 12, 24 h after the injection. The results showed that the total hemocyte count decreased significantly and the phagocytic activity improved notably after the injection of LvLec, V. harveyi or LvLec + V. harveyi. Prophenoloxidase (proPO) activity decreased, while phenoloxidase (PO) activity increased and the changing degree of each group exhibited a significant difference. The hemagglutinating activity and bacteriolytic activity improved significantly, while the antimicrobial activity did not show a remarkable change in all of the groups. There were also changes that occurred in the levels of second messengers (cAMP, cGMP) and protein kinase (PKA, PKG). After the injection of LvLec, V. harveyi or LvLec + V. harveyi, the concentration of cGMP and PKA increased significantly, while the concentration of cAMP and PKG did not change remarkably. The results above suggested that rLvLec could induce nonspecific immune response, including phagocytosis, release of PO, hemagglutination and bacteriolysis through cGMP-PKA pathway in vivo.
Assuntos
Hemócitos , Penaeidae , Animais , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , VibrioRESUMO
The purpose of this study was to evaluate the effects of dietary trans-cinnamaldehyde (TC) on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. Shrimp were randomly divided into 4 groups, with 3 replicants in each group and 70 shrimp in each replicant. The contents of TC in the four groups were 0, 0.4, 0.8 and 1.2 g kg-1, respectively. Samples were taken after 56 days, followed by a 7-day vibrio harveyi challenge experiment. The results showed that TC significantly improved the growth performance by enhancing the activity of digestive enzymes in shrimp (P < 0.05). TC also reduced the content of crude fat (P < 0.05). The addition of TC to the diet attenuated lipid deposition, as evidenced by a reduction in the content of crude fat and a decrease in plasma levels of cholesterol and triglycerides (P < 0.05). The expression of key genes for fatty acid and triglycerides synthesis were significantly down-regulated and key genes for fatty acid ß-oxidation were significantly up-regulated (P < 0.05). In addition, the immune response and antioxidant capability of shrimp were significantly enhanced by the addition of TC to the diet (P < 0.05). Meanwhile, TC could improve intestinal health by increasing the abundance of beneficial bacteria and decreasing the abundance of pathogenic bacteria, but had no significant effect on alpha diversity and beta diversity (P > 0.05). In addition, the results of histopathological sections and plasma transaminase studies showed that TC could improve the health status of hepatopancreas and was a safe nutritional supplement. After the 7-day Vibrio harveyi challenge, the cumulative mortality of shrimp decreased with increasing levels of dietary TC compared with control group (P < 0.05). These results suggested that TC could be used as a nutritional supplement for shrimp to enhance disease resistance and reduce lipid accumulation.
Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Ração Animal/análise , Metabolismo dos Lipídeos , Imunidade Inata , Dieta/veterinária , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , LipídeosRESUMO
The purpose of this study was to explore the optimal fermentation technology of Chinese herbal medicine formula-Siwu Decoction and the effects of fermented Siwu Decoction (FSW) on the growth performance, immune response, intestinal microflora and anti microbial ability of Litopenaeus vannamei. Response to surface methodology (RSM) was used to optimize the fermentation process of Siwu Decoction. The optimal fermentation conditions were obtained as follows: inoculation amount of mixed strains was 4.5%, fermentation time was 36 h, and the ratio of material to liquid was 20%. A total of 1260 shrimps were selected and divided into seven groups, three in parallel in each group. The dietary level of each group was as follows: Control ï¼No additionsï¼, USW1 (0.2% unfermented herbal medicine), USW2 (0.5% unfermented herbal medicine), USW3 (0.8% unfermented herbal medicine), FSW1 (0.2% fermented herbal medicine), FSW2 (0.5% fermented herbal medicine), FSW3 (0.8% fermented herbal medicine). The immune response and antioxidant defense ability of hemocytes and intestine were measured at 21 and 42 days of feeding and the intestinal flora and growth performance were measured at 42 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. The results showed that fermented Siwu Decoction significantly improved the growth performance and body composition of Litopenaeus vannamei; significantly increased the total number of hemocytes, phagocytic activity, antibacterial activity and bacteriolytic activity of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei; the addition of fermented Siwu Decoction significantly increased the gene expression level of hemocytes and intestinal tract of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei. The abundance of Bacillus increased, while the abundance of Vibrio decreased. After Vibrio harveyi challenge, the cumulative mortality of FSW group was significantly lower than that of control group. Fermented Siwu Decoction may be a potential physiological enhancer in aquaculture, and can be widely used in aquaculture.
Assuntos
Resistência à Doença , Medicamentos de Ervas Chinesas/farmacologia , Imunidade Inata , Penaeidae , Vibrio , Animais , Antioxidantes , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Penaeidae/microbiologia , Vibrio/patogenicidadeRESUMO
Benzo[a]pyrene (B[a]P), a typical PAHs widely existing in the marine environment, has been extensively studied for its immunotoxicity due to its persistence and high toxicity. Nevertheless, the immunotoxicity mechanism remain incompletely understood. In this study, isolated hemocytes of Chlamys farreri were exposed at three concentrations of B[a]P (5, 10 and 15 µg/mL), and the effects of B[a]P on detoxification metabolism, signal transduction, humoral immune factors, exocytosis and phagocytosis relevant proteins and immune function at 0, 6, 12, 24 h were studied. Results illustrated the AhR, ARNT and CYP1A1 were significantly induced by B[a]P at 12 h. Additionally, the content of B[a]P metabolite BPDE increased in a dose-dependent manner with pollutants. Under B[a]P stimulation, the expressions of PTK (Src, Fyn) and PLC-Ca2+-PKC pathway gene increased significantly, while the transcription level of AC-cAMP-PKA pathway gene decreased remarkably. Additionally, the expressions of nuclear transcription factors (CREB, NF-κB), complement system genes and C-type lectin genes up-regulated obviously. The gene expressions of phagocytosis and exocytosis related proteins were also notably affected. 5 µg/mL B[a]P could promote phagocytosis in a transitory time, but with the increase of exposure time and concentration of B[a]P, the phagocytosis, antibacterial and bacteriolytic activities gradually decreased. These results indicated that similar to vertebrates, BPDE, the metabolite of B[a]P, mediated downstream signal transduction via PTK in bivalves. The declined of the immune defense ability of hemocytes might be closely related to the inhibition of AC-cAMP-PKA pathway and the imbalance of intracellular Ca2+ pathway. In addition, the results manifested that complement and lectin systems play a significant role in regulating immune response. In this study, the direct relationship between detoxification metabolism and immune signal transduction in bivalves under B[a]P stress was demonstrated for the first time, which provided important information for the potential molecular mechanism of B[a]P-induced immune system disorder in bivalves.
Assuntos
Benzo(a)pireno , Pectinidae , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Animais , Benzo(a)pireno/toxicidade , Hemócitos/metabolismo , Transdução de SinaisRESUMO
Sulfide generally exists in wastewater, black and odor river, as well as aquaculture water, and give rise to adverse effect on ecological stability and biological safety, due to the toxicity, corrosivity and malodor of sulfide. In the present study, a chemolithotrophic sulfide-oxidizing bacteria (SOB) was isolated and identified as Marinobacter maroccanus strain SDSWS8. And it produced no hemolysin and was susceptible to most antibiotics. There were no accumulation of sulfide, sulfate and thiosulfate during the sulfide removal process. The optimum conditions of sulfide removal were temperature 15-40 °C, initial pH value 4.5-9.5, salinity 10-40, C/N ratio 0-20 and sulfide concentration 25-150 mg/L. The key genes of sulfide oxidation, Sox system (soxB, soxX, soxA, soxZ, soxY, soxD, soxC), dissimilatory sulfur oxidation (dsrA, aprA and sat) and sqr, were successfully amplified and expressed, indicating the three pathways coordinated to complete the sulfide oxidation. Besides, strain SDSWS8 had inhibitory effect on four pathogen Vibrio (V. harveyi, V. parahaemolyticus, V. anguillarum and V. splendidus). Furthermore, efficient removal of sulfide from real aquaculture water and sludge mixture could be accomplished by strain SDSWS8. This study may provide a promising candidate strain for sulfide-rich water treatment.
Assuntos
Marinobacter , Bactérias/metabolismo , Marinobacter/genética , Marinobacter/metabolismo , Oxirredução , Sulfetos/toxicidade , Enxofre/metabolismoRESUMO
Considering the ecological risks of polycyclic aromatic hydrocarbons (PAHs) to the marine environment, it is urgent to find scientific and effective monitoring methods. In this study, an integrated approach combining chemical ecological risk assessment and multi-integrated biomarker indexes approach was used to assess the marine environment. Samples included seawater, sediments, and clam Ruditapes philippinarum were collected from four bays on the Shandong Peninsula, China in the four seasons of 2019. The concentrations, composition, potential sources, and ecological risk of PAHs were investigated in seawater and sediments. Risk quotient (RQ) and sediment quality guidelines (SQGs) were calculated to assess the ecological risks of PAHs in seawater and sediment, respectively. And then, clam Ruditapes philippinarum's multi-level biological response, including its ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), superoxide dismutase (SOD), lipid peroxidation (LPO), and acetylcholinesterase (AChE) were investigated in-depth, by which multi-integrated biomarker indexes approach were calculated to evaluate marine environmental quality. Taken together, the results showed that the concentration of PAHs was in good agreement with the response of biomarkers, and the usefulness of the combined use of chemical ecological risk assessment and integrated biomarker indexes to assess PAHs pollution was verified.
Assuntos
Bivalves , Poluentes Químicos da Água , Acetilcolinesterase , Animais , Baías , Biomarcadores , China , Monitoramento Ambiental , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
This study analyzed the function of different glutathione S-transferase (GST) isoforms and detoxification metabolism responses in Manila clam, Ruditapes philippinarum, exposed to 4 kinds of polycyclic aromatic hydrocarbons (PAHs) single, and their mixtures for 15 days under laboratory conditions. 13 kinds of GSTs in R. philippinarum were classified, and the results of tissue distribution indicated that 12 kinds of GSTs (except GST sigma 3) expressed most in digestive glands. We detected the mRNA expression levels of aryl hydrocarbon receptor signaling pathway, and detoxification system in digestive glands of clams exposed to benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and BaP + CHR + BaA + BbF, respectively. Among these genes, we selected GST-sigma, GST-omega and GST-pi as potential indicators to BaP; GST-sigma, GST-A and GST-rho to CHR; GST-pi, GST-sigma, GST-A, GST-rho and GST-microsomal to BaA; GST-theta and GST-mu to BbF; while GST-pi and GST-mu to the mixture of BaP, CHR, BaA and BbF. Additionally, the bioaccumulation of PAHs in tissues increased remarkably over time, and showed an obvious dose-effect. Under the same concentration, the bioaccumulation in single exposure group was higher than that in mixture group, and the bioaccumulation of PAHs in tissues with different concentrations of stress was irregular. The results revealed the metabolic differences and bioaccumulation rules in clams exposed to four kinds of PAHs, and provided more valuable information for the PAHs risk assessment.
Assuntos
Bivalves , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Bioacumulação , Bivalves/efeitos dos fármacos , Bivalves/enzimologia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Isoformas de Proteínas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Polycyclic aromatic hydrocarbons (PAHs), as persistent toxic substances (PTS), have been widely monitored in coastal environment, including seawater and sediment. However, scientific monitoring methods, like ecological risk assessment and integrated biomarker response, still need massive researches to verify their availabilities. This study was performed in March, May, August and October of 2018 at eight sites, Yellow River estuary (S1), Guangli Port (S2), Xiaying (S3), Laizhou (S4), Inner Bay (S5), Outer Bay (S6), Hongdao (S7) and Hongshiya (S8) of Shandong Peninsula, China. The contents of 16 priority PAHs in local seawater and sediment were determined, by which ecological risk assessment risk quotient (RQ) for seawater and sediment quality guidelines (SQGs) were calculated to characterize the PAHs pollution. Meanwhile, multiple biomarkers in the digestive gland of clam Ruditapes philippinarum were measured to represent different biological endpoints, including ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), sulfotransferase (SULT), superoxide dismutase (SOD) and lipid peroxidation (LPO), by which integrated biomarker response (IBR) was calculated to provide a comprehensive assessment of environmental quality. Taken together, these results revealed the heaviest pollution at S2 as both PAHs concentrations and biomarkers responses reflected, and supported the integrated biomarker response as a useful tool for marine environmental monitoring, through its integration with SQGs.
Assuntos
Bivalves , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biomarcadores , China , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análiseRESUMO
Xiao-Chaihu-Decoction (XCHD), a classical traditional Chinese medicine with diverse biological activities, is widely applied to prevent and treat many human diseases. Effects of dietary XCHD on growth performance, immune response, detoxification system, intestinal microbiota and resistance against aflatoxin B1(AFB1) of Litopenaeus vannamei was studied. Four isonitrogenous and isolipidic diets were formulated to contain 0, 1, 2, and 5 g/kg (control, XCHD1, XCHD2 and XCHD3) of XCHD, respectively. Seven hundred and eighty shrimp (1.16 ± 0.09 g) were assigned randomly to 12 tanks (400 L, three tanks each group, 65 shrimp in each tank) for 6 weeks. After sampling, 25 shrimp from each tank were selected for a 2-week AFB1 (2500 µg/kg) challenge experiment. The results indicated that the final weight, weight gain and specific growth rate in XCHD2 and XCHD3 groups were significantly increased compared to control. The protease, amylase, superoxide dismutase (SOD), glutathione s-transferase (GST), sulfotransferase (SULT) activities, total antioxidant capacity (T-AOC) and glutathione (GSH) contents in hepatopancreas were significantly increased in XCHD3 groups and the expressions of immune-related genes (Toll, Dorsal and Cru) in hepatopancreas were significantly up-regulated in XCHD2 and XCHD3 groups. High-throughput sequencing analysis revealed that the abundance of Proteobacteria decreased and the abundances of Bacteroidetes increased in XCHD2 and XCHD3 groups. Additionally, AFB1 challenge experiments showed that AFB1 caused histological damage to the hepatopancreas and significantly increased the levels of malondialdehyde (MDA) and protein carbonylation (PC) in hepatopancreas as well as the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Nevertheless, XCHD could effectively alleviated the growth toxicity, immunosuppression and macromolecular damage caused by AFB1 to shrimp by inhibiting the Phase I enzyme and enhancing Phase II enzyme and antioxidant system.
Assuntos
Suplementos Nutricionais , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Penaeidae , Aflatoxina B1/toxicidade , Ração Animal , Animais , Dieta , Hepatopâncreas/efeitos dos fármacos , Distribuição AleatóriaRESUMO
Gonadotropin-releasing Hormone (GnRH) is a key reproductive endocrine regulator, and melatonin is considered as a potent candidate in the regulation of photoperiod-related reproductive endocrinology. Nevertheless, their function during gonadal development of molluscs has not been uncovered yet. In the present study, RNAi of GnRH and melatonin injection were conducted on marine bivalve manila clam Ruditapes philippinarum. Tissue section showed that gonadal development was significantly inhibited in male clams injected with GnRH dsRNA for 21 days. For GnRH RNAi treatment group, the expression levels of steroid synthetic enzyme genes 3ß-hydroxysteroid dehydrogenase (3ß-HSD), 17ß-hydroxysteroid dehydrogenase (17ß-HSD), cytochrome P450 (CYP3A) and melatonin receptor homolog (MTNR) gene were significantly down-regulated in female clams while significantly up-regulated in male clams. In melatonin injection group, the expression of GnRH was significantly inhibited and the expression of 3ß-HSD, 17ß-HSD, CYP3A and MTNR genes also increased which was in line with the GnRH dsRNA injection group in male clams. These results suggest that melatonin may affect GnRH expression and both have effects on gonadal development of bivalves. This study provides evidence for understanding the effects of melatonin and GnRH on reproductive endocrinology and gonadal development in bivalve molluscs.
Assuntos
Bivalves/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Gônadas/efeitos dos fármacos , Melatonina/farmacologia , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/genética , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Masculino , Interferência de RNA , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo , Caracteres Sexuais , Transdução de SinaisRESUMO
A novel Pseudomonas sp. GZWN4 with the aerobic nitrogen removal ability was isolated from aquaculture water, whose removal efficiency of NO2--N, NO3--N and NH4+-N was 99.72%, 82.54% and 98.62%, respectively. The key genes involved in nitrogen removal, nxr, napA, narI, nirS, norB and nosZ, were successfully amplified and by combination with the results of nitrogen balance analysis, it was inferred that the denitrification pathway of strain GZWN4 was NO3--N â NO2--N â NO â N2O â N2. The strain GZWN4 had excellent nitrite removal performance at pH 7.0-8.5, temperature 25-30 â, C/N ratio 5-20, salinity 8-32 and dissolved oxygen concentration 2.52-5.73 mg L-1. The receivable linear correlation (R2 = 0.9809) was obtained with the range of quantification between l03 and 108 CFU mL-1 of the strain by enzyme-linked immunosorbent assay. Strain GZWN4 could maintain high abundance in the actual water and wastewater of mariculture and the removal efficiency of TN were 52.57% and 63.64%, respectively. The safety evaluation experiment showed that the strain GZWN4 had no hemolysis and high biosecurity toward shrimp Litopenaeus vannamei. The excellent nitrogen removal ability and adaptability to aquaculture environment made strain GZWN4 a promising candidate for treatment of water and wastewater in aquaculture.
Assuntos
Aquicultura , Desnitrificação , Nitrogênio/metabolismo , Pseudomonas , Águas Residuárias/microbiologia , Aerobiose , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificaçãoRESUMO
Heterotrophic nitrification-aerobic denitrification (HNAD) characteristics and antibiotic resistance of two bacterial consortia, Marinomonas communis & Halomonas titanicae (MCH) and Marinomonas aquimarina & Halomonas titanicae (MAH), and their single isolates (MC, MA, and H) were determinated in this study. When cultured in sole and mixed N-source media (NH4+-N and/or NO2--N of 10 mg/L), MCH and MAH exhibited greater efficiency and stability of inorganic-N removal than single isolates, and these strains preferred to remove NH4+-N by simultaneous HNAD in mixed N-source media. Meanwhile, 45%-70% of NH4+-N and/or NO2--N was mainly converted to organic nitrogen (15%-25%) and gaseous nitrogen (30%-40%) by these strains, and more inorganic-N was transformed to intracellular-N by MCH and MAH via assimilation instead of gaseous-N production by denitrification. Both isolates and their consortia had the maximal NH4+-N or NO2--N removal efficiency above 95% under the optimum conditions including temperature of 20-30 °C, C/N ratios of 15-20, and sucrose as carbon source. Interestingly, bacterial consortia performed greater nitrogen removal than single isolates under the low temperature of 10 °C or C/N ratios of 2-5. In real mariculture wastewater, MCH and MAH also showed higher NH4+-N removal efficiency (65%-68%) and more stable cell quantity (4.2-5.2 × 108 CFU/mL) than single strains, due to the interspecific coexistence detected by bacterial quantitation with indirect immunoassay. Additionally, these isolates and consortia had stronger resistances to polypeptides, tetracyclines, sulfonamides, furanes, and macrolides than other antibiotics. These findings will be conducive to the applications of HNAD bacteria of Marinomonas and Halomonas on reducing nitrogen pollution in mariculture or other saline environments.
Assuntos
Halomonas , Marinomonas , Aerobiose , Bactérias , Desnitrificação , Resistência Microbiana a Medicamentos , Halomonas/genética , Processos Heterotróficos , Nitrificação , Nitritos , Nitrogênio , Águas ResiduáriasRESUMO
Benzo [a]pyrene (B [a]P) has received widespread attention for serious pollution in the sea, which may reduce immunity and lead to the outbreak of disease in bivalves. However, the mechanism of immunotoxicity induced by B [a]P in bivalves was still unclear. Previous studies have found that Mitogen-Activated Protein Kinases (MAPKs) including three classic pathways (ERK, p38 and JNK) play an important role in mediating this process. Thus, in order to explore the mechanism of immunotoxicity induced by B [a]P in scallop Chlamys farreri, hemocytes were treated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) for 1 h and then incubation with B [a]P for 24 h at 1 µg/mL. Indexes including oxidative damage, apoptotic rate, and immune indicators were detected in the present study. The results showed that the increase of Reactive Oxygen Species (ROS) and DNA damage induced by B [a]P was inhibited with PD98059 and SB203580. Besides, lysosomal membrane stability (LMS) damage was promoted by PD98059, while it was opposite when treated with SB203580. Moreover, the ascended apoptosis rate induced by B [a]P was increased significantly after treatment with PD98059, but it was remarkably attenuated by SB203580 and SP600125. However, the opposite pattern was showed in phagocytosis compared with apoptosis rate in all of three inhibitors. In addition, antibacterial activity and bacteriolytic activity were enhanced by SB203580 while inhibited by PD98059. Therefore, these results showed that MAPKs directly or indirectly mediate the decrease of oxidative damage, apoptosis and immune defense ability of C. farreri hemocytes, which suggesting ERK/p38/JNK pathways have different functions in the apoptosis and immunity of C. farreri hemocytes after B [a]P exposure. In conclusion, this study intended to enrich the theoretical basis for immunotoxicology of bivalves exposed to pollutants.
Assuntos
Apoptose/genética , Benzo(a)pireno/toxicidade , Inibidores Enzimáticos/farmacologia , Hemócitos/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , Pectinidae/imunologia , Animais , Antracenos/farmacologia , Flavonoides/farmacologia , Hemócitos/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Pectinidae/enzimologia , Pectinidae/genética , Fosforilação , Piridinas/farmacologiaRESUMO
A 28-day feeding trial was conducted to investigate the effects of Yu-Ping-Feng polysaccharides (YPS) containing Astragalus polysaccharides (APS), Atractylodes macrocephala polysaccharides (AMP) and Saposhnikoviae polysaccharides (SPS) on the immune response, intestinal microbiota, disease resistance and growth performance of Litopenaeus vannamei. Seven hundred and twenty shrimp (3.04 ± 0.33 g) were fed the following diets: Control, YPS1 (0.13% APS + 0.0325% AMP + 0.0325% SPS), YPS2 (0.13% APS + 0.0325% AMP + 0.065% SPS) and YPS3 (0.13% APS + 0.0325% AMP+0.0975% SPS). After 14 and 28 days of feeding, the immune responses of hemocytes and intestine were measured. Intestinal microbiota and growth performance were measured after 28 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. A significant (P < 0.05) increase of the total haemocyte count (THC), phagocytic activity, antibacterial activity and phenoloxidase (PO) activity was observed in shrimp fed YPS diets compared to the control. Also, dietary YPS supplementation particularly YPS3 group significantly increased the expressions of immune-related genes in the hemocytes and intestine. Regarding the intestinal microbiota, the microbial diversity and richness decreased and functional genes associated with short-chain fatty acids metabolism increased in YPS groups. After Vibrio harveyi challenge, the cumulative mortality in YPS groups was significantly lower than that of the control. Besides, dietary YPS had no significant effect on growth performance of shrimp (P > 0.05). The present results suggested that YPS could be considered as potential prebiotics for aquaculture farmed shrimp.