Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(4): 5302-5307, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38156405

RESUMO

Atomically thin oxide semiconductors are emerging as potential materials for their potentiality in monolithic 3D integration and sensor applications. In this study, a charge transfer method employing viologen, an organic compound with exceptional reduction potential among n-type organics, is presented to modulate the carrier concentration in atomically thin In2O3 without the need of annealing. This study highlights the critical role of channel thickness on doping efficiency, revealing that viologen charge transfer doping is increasingly pronounced in thinner channels owing to their increased surface-to-volume ratio. Upon viologen doping, an electron sheet density of 6.8 × 1012 cm-2 is achieved in 2 nm In2O3 back gate device while preserving carrier mobility. Moreover, by the modification of the functional groups, viologens can be conveniently removed with acetone and an ultrasonic cleaner, making the viologen treatment a reversible process. Based on this doping scheme, we demonstrate an n-type metal oxide semiconductor inverter with viologen-doped In2O3, exhibiting a voltage gain of 26 at VD = 5 V. This complementary pairing of viologen and In2O3 offers ease of control over the carrier concentration, making it suitable for the next-generation electronic applications.

2.
Nat Commun ; 14(1): 5243, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640725

RESUMO

The scaling of transistors with thinner channel thicknesses has led to a surge in research on two-dimensional (2D) and quasi-2D semiconductors. However, modulating the threshold voltage (VT) in ultrathin transistors is challenging, as traditional doping methods are not readily applicable. In this work, we introduce a optical-thermal method, combining ultraviolet (UV) illumination and oxygen annealing, to achieve broad-range VT tunability in ultrathin In2O3. This method can achieve both positive and negative VT tuning and is reversible. The modulation of sheet carrier density, which corresponds to VT shift, is comparable to that obtained using other doping and capacitive charging techniques in other ultrathin transistors, including 2D semiconductors. With the controllability of VT, we successfully demonstrate the realization of depletion-load inverter and multi-state logic devices, as well as wafer-scale VT modulation via an automated laser system, showcasing its potential for low-power circuit design and non-von Neumann computing applications.

3.
Nanoscale Res Lett ; 17(1): 30, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244784

RESUMO

With the increasing demand of silicon carbide (SiC) power devices that outperform the silicon-based devices, high cost and low yield of SiC manufacturing process are the most urgent issues yet to be solved. It has been shown that the performance of SiC devices is largely influenced by the presence of so-called killer defects, formed during the process of crystal growth. In parallel to the improvement of the growth techniques for reducing defect density, a post-growth inspection technique capable of identifying and locating defects has become a crucial necessity of the manufacturing process. In this review article, we provide an outlook on SiC defect inspection technologies and the impact of defects on SiC devices. This review also discusses the potential solutions to improve the existing inspection technologies and approaches to reduce the defect density, which are beneficial to mass production of high-quality SiC devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA