Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nanotechnology ; 35(8)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37963407

RESUMO

Feroxyhite (δ-FeOOH) nanomaterials were successfully synthesized through the atmospheric AC microplasma method at room temperature from ferrous sulfate aqueous solutions. Various syntheses conditions, including electric voltage, electric field strength, ferrous concentration, hydrogen peroxide concentration, and reaction duration, were systematically investigated. The synthesized products were characterized through x-ray diffraction, UV-vis absorption spectroscopy, photoluminescence spectroscopy, infra-red spectroscopy, and electron microscopy. The bandgap of the produced materials were strongly dependent of the ferrous concentration while the product ratio was dependent on all experimental conditions. The synthesis mechanism was thoroughly discussed. The synthesized nanomaterials were amorphous nanospheres, showing superparamagnetic properties at room temperature. The synthesized oxyhydroxide is a potential photovoltaic material besides its reported applications in photocatalysts and supercapacitors. The application of this synthesis technique could be extended to synthesize other oxy-hydroxide nanomaterials for renewable energy applications facilely, scalablely, cost-effectively, and environmentally.

2.
Opt Express ; 30(2): 1442-1451, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209304

RESUMO

The circular intensity differential scattering (CIDS), i.e. the normalized Mueller matrix element -S14/S11, can be used to detect the helical structures of DNA molecules in biological systems, however, no CIDS measurement from single particles has been reported to date. We report an innovative method for measuring CIDS phase functions from single particles individually flowing through a scattering laser beam. CIDS signals were obtained from polystyrene latex (PSL) microspheres with or without coating of DNA molecules, tryptophan particles, and aggregates of B. subtilis spores, at the size of 3 µm in diameter. Preliminary results show that this method is able to measure CIDS phase function in tens of microseconds from single particles, and has the ability to identify particles containing biological molecules.


Assuntos
Partículas e Gotas Aerossolizadas/análise , Bacillus subtilis/citologia , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Poliestirenos/análise , Triptofano/análise , Difusão Dinâmica da Luz , Desenho de Equipamento , Microesferas , Tamanho da Partícula
3.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144702

RESUMO

Characterization, identification, and detection of aerosol particles in their native atmospheric states remain a challenge. Recently, optical trapping-Raman spectroscopy (OT-RS) has been developed and demonstrated for characterization of single, airborne particles. Such particles in different chemical groups have been characterized by OT-RS in recent years and many more are being studied. In this work, we collected single-particle Raman spectra measured using the OT-RS technique and began construction of a library of OT-RS fingerprints that may be used as a reference for potential detection and identification of aerosol particles in the atmosphere. We collected OT-RS fingerprints of aerosol particles from eight different categories including carbons, bioaerosols (pollens, fungi, vitamins, spores), dusts, biological warfare agent surrogates, etc. Among the eight categories, spectral fingerprints of six groups of aerosol particles have been published previously and two other groups are new. We also discussed challenges, limitations, and advantages of using single-particle optical trapping-Raman spectroscopy for aerosol-particle characterization, identification, and detection.


Assuntos
Pinças Ópticas , Análise Espectral Raman , Aerossóis/química , Armas Biológicas , Análise Espectral Raman/métodos , Vitaminas
4.
Opt Lett ; 46(21): 5332-5335, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724468

RESUMO

We present a novel method for actively controlling circular and/or spin-rotational motion of an optically trapped airborne micro-particle. A 532-nm Gaussian laser beam is shaped into an elliptical ring by a pair of axicons and a cylindrical lens. The shaped beam is then focused into an elliptic cone that produces an optical trap. As the cylindrical lens is rotated, a torque is exerted on the trapped particle, resulting in circular or spin-rotational motion. We show examples of the circular-rotational movement as a function of laser power and the rotation rate of the cylindrical lens.

5.
Opt Express ; 27(23): 33061-33069, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878380

RESUMO

We present an advanced optical-trapping method that is capable of trapping arbitrary shapes of transparent and absorbing particles in air. Two parabolic reflectors were used to reflect the inner and outer parts of a single hollow laser beam, respectively, to form two counter-propagating conical beams and bring them into a focal point for trapping. This novel design demonstrated high trapping efficiency and strong trapping robustness with a simple optical configuration. Instead of using expensive microscope objectives, the parabolic reflectors can not only achieved large numerical aperture (N.A.) focusing, but were also able to focus the beam far away from optical surfaces to minimize optics contamination. This design also offered a large free space for flexible integration with other measuring techniques, such as optical-trapping Raman spectroscopy, for on-line single particle characterization.

6.
Phys Chem Chem Phys ; 20(28): 19151-19159, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29975384

RESUMO

Chemical reactions in aerosol particles can occur between the reactive components of the particle or between the particle and its surrounding media. The fate of atmospheric aerosols depends on the environment, the composition and the distribution of components within a particle. It could be very interesting to see how a liquid aerosol particle behaves in ambient air if the particle is composed of mixed chemicals. Do the chemical components remain homogeneously mixed within a particle or separate as the mixed liquid is aerosolized? How do the chemicals within a droplet separate and interact with the air? In this paper, a single microdroplet formed from an organic-organic mixture of diethyl phthalate (DEPh) and glycerol was investigated using laser-trapped position-resolved temporal Raman spectroscopy. For the first time, we were able to directly observe the gradient distributions of the two chemicals at different positions within such an airborne droplet, their time-resolved processes of liquid-liquid phase-separation, and changes of the physical microstructure and chemical micro-composition in the droplet. The results revealed that DEPh migrated to the surface and formed an outer layer and glycerol was more concentrated in the interior of the droplet, DEPh evaporated faster than glycerol, and both organic chemicals within the mixed droplet evaporated faster than either of them within their pure droplets. This technique also provides a new method for studying the fine structure and chemical reactions of different molecules taking place inside a particle and at the interface of a particle with the surrounding microenvironment.

7.
Opt Express ; 25(6): 6732-6745, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381017

RESUMO

We integrated a rigid optical trap into a tunable pulsed cavity ringdown spectroscopy (OT-CRDS) system to characterize the extinction of single airborne particles in the UV spectral region (306-315 nm). Single solid particles from a multi-walled carbon nanotube (MWCNT), Bermuda grass smut spore, carbon microsphere, and blackened polyethylene microsphere were trapped in air based on the photophoretic force. The improved OT-CRDS system was highly sensitive and able to resolve extinctions of single particles from different materials and sizes at a given wavelength. Further, we successfully manipulated the number of particles, e.g., 1, 2 or more particles, in the trap and measured their distinguishable extinctions using the OT-CRDS. We also show that the particle size and extinction have a good linear correlation from the measurements of 24 single MWCNT particles. Material- and wavelength-dependent extinctions of the four types of airborne particles were also characterized. Results reveal that single airborne particles regardless of their differences in material and size, due to their heterogeneous morphology, have individual-particle dependent extinctions and that dependence can be resolved and characterized using the OT-CRDS technique.

8.
Opt Lett ; 42(24): 5113-5116, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240150

RESUMO

It could be very useful to detect and monitor the molecules and molecular reactions located at different positions within a microsized particle as they respond to various micro-local environments. In this Letter, a particular optical trap using two focusing counterpropagating hollow beams was able to stably trap both absorbing and nonabsorbing particles in air for lengthy observation. A technique that can measure the Raman spectra from different submicrometer positions of a laser-trapped single airborne particle was developed. Spontaneous and stimulated Raman scattering spectra originating from different positions of a diethyl phthalate droplet were recorded, and the strong Raman scattering signals are the result of cavity-enhanced effects and the localized strong light illumination.

9.
Appl Opt ; 56(23): 6577-6582, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047948

RESUMO

Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

10.
Appl Opt ; 56(3): B1-B4, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157859

RESUMO

We demonstrate a method for measuring elastic back-scattering patterns from single laser trapped micron-sized particles, spanning the scattering angle range of θ=167.7°-180° and φ=0°-360° in spherical coordinates. We calibrated the apparatus by capturing light-scattering patterns of 10 µm diameter borosilicate glass microspheres and comparing their scattered intensities with Lorenz-Mie theory. Back-scattering patterns are also presented from a single trapped Johnson grass spore, two attached Johnson grass spores, and a cluster of Johnson grass spores. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering data for lidar applications.

11.
Opt Express ; 24(11): 11654-67, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410091

RESUMO

Tryptophan is a fluorescent amino acid common in proteins. Its absorption is largest for wavelengths λ ≲ 290 nm and its fluorescence emissions peak around 300-350 nm, depending upon the local environment. Here we report the observation of red fluorescence near 600 nm emerging from 488-nm continuous-wave (CW) laser photoexcitation of dry tryptophan (Trp) particles. With an excitation intensity below 0.5 kW/cm2, dry Trp particles yield distinctive Raman scattering peaks in the presence of relatively weak and spectrally broad emissions with λ ∼500-700 nm, allowing estimation of particle temperature at low excitation intensities. When the photoexcitation intensity is increased to 1 kW/cm2 or more for a few minutes, fluorescence intensity dramatically increases by more than two orders of magnitude. The fluorescence continues to increase in intensity and gradually shift to the red when photoexcitation intensity and the duration of exposure are increased. The resulting products absorb at visible wavelengths and generate red fluorescence with λ ∼ 650-800 nm with 633-nm CW laser excitation. We attribute the emergence of orange and red fluorescence in the Trp products to a photochemical transformation that is instigated by weak optical transitions to triplet states in Trp with 488-nm excitation and which may be expedited by a photothermal effect.


Assuntos
Espectrometria de Fluorescência , Análise Espectral Raman , Triptofano/química , Temperatura
12.
Opt Express ; 23(3): 3630-9, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836215

RESUMO

We demonstrate photophoretic trapping of micron-sized absorbing particles in air using pulsed and continuous-wave (CW) ultraviolet laser illumination at wavelengths of 351 nm and 244 nm. We compared the particle trapping dynamics in two trapping geometries consisting of a hollow optical cone formed by light propagating either with or against gravity. This comparison allowed us to isolate the influence of the photophoretic force from the radiative pressure and the convective forces. We found that the absorbing spherical particles tested experienced a positive photophoretic force, whereas the spatially irregular, non-spherical particles tested experienced a negative photophoretic force. By using two trapping geometries, both spherical and non-spherical absorbing particles could be trapped and held securely in place. The position of the trapped particles exhibited a standard deviation of less than 1 µm over 20 seconds. Moreover, by operating in the UV and deep-UV where the majority of airborne materials are absorptive, the system was able to trap a wide range of particle types. Such a general purpose optical trap could enable on-line characterization of airborne particles when coupled with interrogation techniques such as Raman spectroscopy.

13.
Opt Lett ; 40(12): 2798-801, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26076265

RESUMO

Optical trapping of airborne particles is emerging as an essential tool in applications ranging from online characterization of living cells and aerosols to particle transport and delivery. However, existing optical trapping techniques using a single laser beam can trap only transparent particles (via the radiative pressure force) or absorbing particles (via the photophoretic force), but not particles of either type-limiting the utility of trapping-enabled aerosol characterization techniques. Here, we present the first optical trapping technique capable of trapping both transparent and absorbing particles with arbitrary morphology using a single shaped laser beam. Such a general-purpose optical trapping mechanism could enable new applications such as trapping-enabled aerosol characterization with high specificity.


Assuntos
Absorção de Radiação , Ar , Lasers , Fenômenos Ópticos , Pinças Ópticas
14.
Sensors (Basel) ; 15(8): 19021-46, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26247952

RESUMO

The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field.


Assuntos
Microfluídica , Pinças Ópticas , Análise Espectral Raman/métodos , Descoberta de Drogas , Humanos , Lasers
15.
Opt Express ; 22(7): 8165-89, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718194

RESUMO

A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B. atrophaeus var. globigii (BG) (formerly known as Bacillus globigii), B. thuringiensis israelensis (Bti), B. thuringiensis kurstaki (Btk), B. anthracis Sterne (BaS); (2) vegetative bacteria: Escherichia coli (E. coli), Pantoea agglomerans (Eh) (formerly known as Erwinia herbicola), Yersinia rohdei (Yr), Yersinia pestis CO92 (Yp); and (3) virus preparations: Venezuelan equine encephalitis TC83 (VEE) and the bacteriophage MS2. The excitation wavelengths were 266 nm, 273 nm, 280 nm, 365 nm and 405 nm.


Assuntos
Bactérias/química , Fatores Biológicos/análise , Espectrometria de Fluorescência/métodos , Fluorescência
16.
Opt Lett ; 39(14): 4076-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121655

RESUMO

We measured the polarization-resolved angular elastic scattering intensity distribution of aggregates composed of primary particles with different shapes and packing densities in the near-backward directions (155°-180°). Specifically, we compare aggregates composed of spherical polystyrene latex spheres, cylinder-like Bacillus subtilis particles, and Arizona road dust, as well as tryptophan particles. We observe clearly differentiable polarization aspect ratios and find that the negative polarization dip is more pronounced in more densely packed aggregates or particles. This work indicates that the polarization aspect ratio in the near-backward direction may be used as a fingerprint to discriminate between aggregates with the same size and overall shape by differences in their constituent particles.


Assuntos
Monitoramento Ambiental/instrumentação , Material Particulado/análise , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
17.
Opt Lett ; 39(9): 2767-70, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24784098

RESUMO

We report on observation of particle cones formed by optical trapping of absorbing particles in air using two sets of simple geometric optical schemes. Further, the trapped particles on a cone in both schemes are size-sorted with large particles or particle ensembles close to the cone vertex. This new experimental observation shows an excellent example of 3D particle trapping between the two extreme cases, photon radiation trapping of nonabsorbing particles and photophoretic trapping of strongly absorbing particles; and the observation may challenge theoretical calculations of the trapping forces applied in this case.

18.
Opt Express ; 21(19): 22285-313, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104120

RESUMO

This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B6 and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.


Assuntos
Aerossóis/metabolismo , Bactérias/metabolismo , Biopolímeros/química , Modelos Biológicos , Espectrometria de Fluorescência/métodos , Absorção , Aerossóis/química , Bactérias/química , Simulação por Computador , Fluorescência , Luz , Modelos Químicos
19.
Appl Spectrosc ; 77(11): 1300-1310, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37710971

RESUMO

Single particles trapped in an optical trap may experience temperature elevation, yet direct measurement of temperature and its distribution inside the optical trap of several to hundreds of microns in size remains a big challenge. We introduce a method that can measure the temperature inside a universal optical trap (UOT) using Raman spectroscopy of single trapped particles of high thermal conductivity. We measured temperature and temperature distributions inside the UOT using Raman shifts of single-walled carbon nanotubes (SWCNTs) and micron-sized diamonds (MSDs), which are heated by trapping laser beams directly or indirectly, depending on the location of the particle in the trap. We show that the temperature at the center of the UOT is much lower than the temperature along the hollow beams that form a hollow, cage-shaped UOT. In the range of the trapping laser power of 200-2950 mW, the surface temperature of particles trapped at the center of a UOT changes from 322 K to 830 K, correspondingly. This result gives a heating rate as a high thermal-absorbing particle trapped in the center of the UOT with 18.3 ± 0.4 °C/100 mW. In addition, the temperature gradient outside the UOT was also characterized by trapping SWCNT particles outside the UOT. Results show that when a light-absorbing particle is trapped for the study of material property, phase transitions, surface equilibrium process, chemical reactions, etc., this method can be used to measure temperature distribution and its variations in the trap and its surroundings.

20.
Opt Express ; 20(5): 5325-34, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418339

RESUMO

A new method is demonstrated for optically trapping micron-sized absorbing particles in air and obtaining their single-particle Raman spectra. A 488-nm Gaussian beam from an Argon ion laser is transformed by conical lenses (axicons) and other optics into two counter-propagating hollow beams, which are then focused tightly to form hollow conical beams near the trapping region. The combination of the two coaxial conical beams, with focal points shifted relative to each other along the axis of the beams, generates a low-light-intensity biconical region totally enclosed by the high-intensity light at the surface of the bicone, which is a type of bottle beam. Particles within this region are trapped by the photophoretic forces that push particles toward the low-intensity center of this region. Raman spectra from individual trapped particles made from carbon nanotubes are measured. This trapping technique could lead to the development of an on-line real-time single-particle Raman spectrometer for characterization of absorbing aerosol particles.


Assuntos
Monitoramento Ambiental/instrumentação , Pinças Ópticas , Material Particulado/análise , Análise Espectral Raman/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA