Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sheng Li Xue Bao ; 74(4): 525-533, 2022 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-35993203

RESUMO

This study aims to explore the electrophysiological properties and changes in gene expression of basket cells, a unique population of GABAergic interneurons expressing parvalbumin (PV), during the postnatal development of mouse prefrontal cortex (PFC). Toward this goal, we took use of the G42 transgenic mouse line which specifically expresses enhanced green fluorescent protein (EGFP) in basket cells. The brain slices of PFC were prepared from the postnatal 7 (P7), 14 (P14) and 21 days (P42) G42 mice and whole-cell patch clamp recording was performed in basket cells. In addition, we sorted the basket cells by flow cytometry and analyzed their transcription profiling on P7, P14, and P21 using RNA-seq technology. The results showed that the resting membrane potential and membrane input resistance decreased gradually from P7 to P21. The amplitude and duration of action potential of basket cells increased and decreased from P7 to P21, respectively. In contrast, the threshold of action potential of basket cells did not have a significant change from P7 to P21. The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of basket cells increased gradually, while the amplitudes of sEPSCs of basket cells remained constant from P7 to P21. RNA sequencing from basket cells revealed that the expression of 22 and 660 genes was upregulated and downregulated from P7 to P14, respectively. By contrast, the expression of 107 and 69 genes was upregulated and downregulated from P14 to P21, respectively. The differentially expressed genes in basket cells from P7 to P21 were significantly enriched in pathways such as neuron apoptotic process, mRNA processing, Golgi vesicle transport and axon guidance. Altogether, we characterized electrophysiological properties and changes in gene expression of basket cells during the postnatal development in mouse PFC. These results provide insight into the mechanisms underlying the development of basket cells in mouse cortex.


Assuntos
Interneurônios , Parvalbuminas , Animais , Expressão Gênica , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo
2.
J Cell Mol Med ; 24(13): 7504-7514, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412186

RESUMO

Despite the prognostic value of IDH and other gene mutations found in diffuse glioma, markers that judge individual prognosis of patients with diffuse lower-grade glioma (LGG) are still lacking. This study aims to develop an expression-based microRNA signature to provide survival and radiotherapeutic response prediction for LGG patients. MicroRNA expression profiles and relevant clinical information of LGG patients were downloaded from The Cancer Genome Atlas (TCGA; the training group) and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analysis, random survival forests-variable hunting (RSFVH) screening and receiver operating characteristic (ROC) were used to identify the prognostic microRNA signature. ROC and TimeROC curves were plotted to compare the predictive ability of IDH mutation and the signature. Stratification analysis was conducted in patients with radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore the biological function of the signature. We identified a five-microRNA signature that can classify patients into low-risk or high-risk group with significantly different survival in the training and test datasets (P < 0.001). The five-microRNA signature was proved to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). Stratification analysis found the signature could further divide patients after radiotherapy into two risk groups. GO and KEGG analyses revealed that microRNAs from the prognostic signature were mainly enriched in cancer-associated pathways. The newly discovered five-microRNA signature could predict survival and radiotherapeutic response of LGG patients based on individual microRNA expression.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/radioterapia , MicroRNAs/genética , Adulto , Neoplasias Encefálicas/patologia , Bases de Dados Genéticas , Feminino , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Mutação/genética , Gradação de Tumores , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida
3.
J Cell Biochem ; 121(7): 3593-3605, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31960992

RESUMO

Glioblastoma multiforme (GBM) is a highly malignant brain tumor. We explored the prognostic gene signature in 443 GBM samples by systematic bioinformatics analysis, using GSE16011 with microarray expression and corresponding clinical data from Gene Expression Omnibus as the training set. Meanwhile, patients from The Chinese Glioma Genome Atlas database (CGGA) were used as the test set and The Cancer Genome Atlas database (TCGA) as the validation set. Through Cox regression analysis, Kaplan-Meier analysis, t-distributed Stochastic Neighbor Embedding algorithm, clustering, and receiver operating characteristic analysis, a two-gene signature (GRIA2 and RYR3) associated with survival was selected in the GSE16011 dataset. The GRIA2-RYR3 signature divided patients into two risk groups with significantly different survival in the GSE16011 dataset (median: 0.72, 95% confidence interval [CI]: 0.64-0.98, vs median: 0.98, 95% CI: 0.65-1.61 years, logrank test P < .001), the CGGA dataset (median: 0.84, 95% CI: 0.70-1.18, vs median: 1.21, 95% CI: 0.95-2.94 years, logrank test P = .0017), and the TCGA dataset (median: 1.03, 95% CI: 0.86-1.24, vs median: 1.23, 95% CI: 1.04-1.85 years, logrank test P = .0064), validating the predictive value of the signature. And the survival predictive potency of the signature was independent from clinicopathological prognostic features in multivariable Cox analysis. We found that after transfection of U87 cells with small interfering RNA, GRIA2 and RYR3 influenced the biological behaviors of proliferation, migration, and invasion of glioblastoma cells. In conclusion, the two-gene signature was a robust prognostic model to predict GBM survival.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Invasividade Neoplásica , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Processos Estocásticos , Resultado do Tratamento , Cicatrização , Adulto Jovem
4.
Brain Res ; 1822: 148615, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783261

RESUMO

Transcranial photobiomodulation refers to irradiation of the brain through the skull using low-intensity red or near-infrared light, which is the most commonly studied method of light energy biotherapy for central nervous system disorders. The absorption of photons by specific chromophores within the cell elevates ATP synthesis, reduces oxidative stress damage, alleviates inflammation or mediates the activation of transcription factors and signaling mediators through secondary mediators, which in turn trigger downstream signaling pathways to cause a series of photobiological effects including upregulation of neurotrophic factors. Multiple mechanisms are simultaneously involved in the pathological process of central nervous system disorders. The pleiotropic treatment of transcranial photobiomodulation towards multiple targets plays a beneficial role in improving hemodynamics, neural repair and improving behaviors in central nervous system disorders such as ischemic stroke, traumatic brain injury, neurodegenerative diseases, epilepsy and depression. This review mainly introduces the mechanism and recent preclinical and clinical advances of transcranial photobiomodulation for central nervous system disorders, which will provide a reference for clinicians to understand and engage in related studies, and calls for more and larger studies to validate and develop a wider application of transcranial photobiomodulation in central nervous system.


Assuntos
Lesões Encefálicas Traumáticas , AVC Isquêmico , Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Crânio , AVC Isquêmico/metabolismo
5.
Mol Neurobiol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713438

RESUMO

Microglia and astrocytes are key players in neuroinflammation and ischemic stroke. A1 astrocytes are a subtype of astrocytes that are extremely neurotoxic and quickly kill neurons. Although the detrimental A1 astrocytes are present in many neurodegenerative diseases and are considered to accelerate neurodegeneration, their role in the pathophysiology of ischemic stroke is poorly understood. Here, we combined RNA-seq, molecular and immunological techniques, and behavioral tests to investigate the role of A1 astrocytes in the pathophysiology of ischemic stroke. We found that astrocyte phenotypes change from a beneficial A2 type in the acute phase to a detrimental A1 type in the chronic phase following ischemic stroke. The activated microglial IL1α, TNF, and C1q prompt commitment of A1 astrocytes. Inhibition of A1 astrocytes induction attenuates reactive gliosis and ameliorates morphological and functional defects following ischemic stroke. The crosstalk between astrocytic C3 and microglial C3aR contributes to the formation of A1 astrocytes and morphological and functional defects. In addition, NF-κB is activated following ischemic stroke and governs the formation of A1 astrocytes via direct targeting of inflammatory cytokines and chemokines. Taken together, we discovered that A2 astrocytes and A1 astrocytes are enriched in the acute and chronic phases of ischemic stroke respectively, and that the C3/C3aR/NF-κB signaling leads to A1 astrocytes induction. Therefore, the C3/C3aR/NF-κB signaling is a novel therapeutic target for ischemic stroke treatment.

6.
Theranostics ; 13(3): 896-909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793857

RESUMO

Background: Excessive immune activation leads to secondary injury and impedes injured brain recovery after ischemic stroke. However, few effective methods are currently used for equilibrating immune balance. CD3+NK1.1-TCRß+CD4-CD8- double-negative T (DNT) cells which do not express NK cell surface markers are unique regulatory cells that maintain homeostasis in several immune-related diseases. However, the therapeutic potential and regulatory mechanism of DNT cells in ischemic stroke are still unknown. Methods: Mouse ischemic stroke is induced by occlusion of the distal branches of the middle cerebral artery (dMCAO). DNT cells were adoptively transferred intravenously into ischemic stroke mice. Neural recovery was evaluated by TTC staining and behavioral analysis. Using immunofluorescence, flow cytometry, and RNA sequencing, the immune regulatory function of DNT cells was investigated at different time points post ischemic stroke. Results: Adoptive transfer of DNT cells significantly reduces infarct volume and improves sensorimotor function after ischemic stroke. DNT cells suppress peripheral Trem1+ myeloid cell differentiation during the acute phase. Furthermore, they infiltrate the ischemic tissue via CCR5 and equilibrate the local immune balance during the subacute phase. During the chronic phase, DNT cells enhance Treg cell recruitment through CCL5, eventually developing an immune homeostatic milieu for neuronal recovery. Conclusions: DNT cell treatment renders the comprehensive anti-inflammatory roles in specific phases of ischemic stroke. Our study suggests that the adoptive transfer of regulatory DNT cells may be a potential cell-based therapy for ischemic stroke.


Assuntos
AVC Isquêmico , Camundongos , Animais , AVC Isquêmico/terapia , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T Reguladores , Inflamação , Linfócitos T CD8-Positivos
7.
JHEP Rep ; 5(6): 100726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138676

RESUMO

Background & Aims: Phospholipase D1 (PLD1), a phosphatidylcholine-hydrolysing enzyme, is involved in cellular lipid metabolism. However, its involvement in hepatocyte lipid metabolism and consequently non-alcoholic fatty liver disease (NAFLD) has not been explicitly explored. Methods: NAFLD was induced in hepatocyte-specific Pld1 knockout (Pld1(H)-KO) and littermate Pld1 flox/flox (Pld1-Flox) control mice feeding a high-fat diet (HFD) for 20 wk. Changes of the lipid composition in the liver were compared. Alpha mouse liver 12 (AML12) cells and mouse primary hepatocytes were incubated with oleic acid or sodium palmitate in vitro to explore the role of PLD1 in the development of hepatic steatosis. Hepatic PLD1 expression was evaluated in liver biopsy samples in patients with NAFLD. Results: PLD1 expression levels were increased in the hepatocytes of patients with NAFLD and HFD-fed mice. Compared with Pld1-Flox mice, Pld1(H)-KO mice exhibited decreased plasma glucose and lipid levels as well as lipid accumulation in liver tissues after HFD feeding. Transcriptomic analysis showed that hepatocyte-specific deficiency of PLD1 decreased Cd36 expression in steatosis liver tissues, which was confirmed at the protein and gene levels. In vitro, specific inhibition of PLD1 with VU0155069 or VU0359595 decreased CD36 expression and lipid accumulation in oleic acid- or sodium palmitate-treated AML12 cells or primary hepatocytes. Inhibition of hepatocyte PLD1 significantly altered lipid composition, especially phosphatidic acid and lysophosphatidic acid levels in liver tissues with hepatic steatosis. Furthermore, phosphatidic acid, the downstream product of PLD1, increased the expression levels of CD36 in AML12 cells, which was reversed by a PPARγ antagonist. Conclusions: Hepatocyte-specific Pld1 deficiency ameliorates lipid accumulation and NAFLD development by inhibiting the PPARγ/CD36 pathway. PLD1 may be a new target for the treatment of NAFLD. Impact and implications: The involvement of PLD1 in hepatocyte lipid metabolism and NAFLD has not been explicitly explored. In this study, we found that the inhibition of hepatocyte PLD1 exerted potent protective effects against HFD-induced NAFLD, which were attributable to a reduction in PPARγ/CD36 pathway-mediated lipid accumulation in hepatocytes. Targeting hepatocyte PLD1 may be a new target for the treatment of NAFLD.

8.
Front Immunol ; 13: 840755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296088

RESUMO

Psoriasis is a chronic skin disorder associated with multiple sequelae, such as psoriatic arthritis and cardiovascular diseases. Increasing evidence has shown that γδ T cells, as sources of IL-17A, play critical roles in psoriatic inflammations. However, there still lack effective ways to manipulate these pathogenic γδ T cells, which are less well studied than αß T cells. The present study aims to characterize the phenotype of γδ T cells and evaluate the impact of D-mannose (a C-2 epimer of glucose) on γδ T cell-mediated psoriasis. We found that skin-draining LN γδ T cells underwent robust proliferation and acquired an IL-17-producing phenotype during psoriasis. The transcriptomic profiles of these psoriatic γδ T cells had elevated glycolytic signatures. Importantly, D-mannose treatment suppressed the γδ T cell reaction and successfully alleviated the local and systematic inflammation induced by imiquimod. The decreased AKT/mTOR/HIF-1α signaling and glycolytic ability may contribute to the suppression of γδ T cells achieved by D-mannose. Our study increased understanding of γδ T cells in psoriasis and promoted D-mannose utilization as a potential clinical application for autoimmune diseases driven by γδ T cells.


Assuntos
Linfócitos Intraepiteliais , Psoríase , Animais , Imiquimode/farmacologia , Inflamação , Manose , Camundongos , Pele
9.
Biotechniques ; 70(2): 100-106, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33415991

RESUMO

Transcription activator-like effector (TALE) nucleases (TALENs) efficiently recognize and cleave DNA in a sequence-dependent manner. However, current TALE custom synthesis methods are either complicated or expensive. Here we report a simple and low-cost method for TALE construct assembly. This method utilizes the denaturation/reannealing nature of double-stranded DNA to create a unique single-stranded DNA overhang for proper ordering of TALE monomers in an engineered multimer. We successfully synthesized two TALEN pairs targeting the endogenous TET1 locus in human embryonic kidney cells and demonstrated their editing efficiency. Our method provides an alternative simple, low-cost method for effective TALEN assembly, which may improve the application of TALE-based technology.


Assuntos
Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Efetores Semelhantes a Ativadores de Transcrição , DNA/genética , Primers do DNA , Humanos , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
10.
Front Cell Neurosci ; 15: 664312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262436

RESUMO

Perforin-mediated cytotoxicity plays a crucial role in microbial defense, tumor surveillance, and primary autoimmune disorders. However, the contribution of the cytolytic protein perforin to ischemia-induced secondary tissue damage in the brain has not been fully investigated. Here, we examined the kinetics and subpopulations of perforin-positive cells and then evaluated the direct effects of perforin-mediated cytotoxicity on outcomes after ischemic stroke. Using flow cytometry, we showed that perforin+CD45+ immune cells could be detected at 12 h and that the percentage of these cells increased largely until on day 3 and then significantly declined on day 7. Surprisingly, the percentage of Perforin+CD45+ cells also unexpectedly increased from day 7 to day 14 after ischemic stroke in Perforin1-EGFP transgenic mice. Our results suggested that Perforin+CD45+ cells play vital roles in the ischemic brain at early and late stages and further suggested that Perforin+CD45+ cells are a heterogeneous population. Surprisingly, in addition to CD8+ T cells, NK cells, and NKT cells, central nervous system (CNS)-resident immune microglia, which are first triggered and activated within minutes after ischemic stroke in mice, also secreted perforin during ischemic brain injury. In our study, the percentage of perforin+ microglia increased from 12 h after ischemic stroke, increased largely until on day 3 after ischemic stroke, and then moderately declined from days 3 to 7. Intriguingly, the percentage of perforin+ microglia also dramatically increased from days 7 to 14 after ischemic stroke. Furthermore, compared with wild-type littermates, Perforin 1-/- mice exhibited significant increases in the cerebral infarct volume, neurological deficits, and neurogenesis and inhibition of neurotoxic astrogliosis. Interestingly, the number of CD45+CD3+ T cells was significantly decreased in Perforin 1-/- mice compared with their wild-type littermates, especially the number of γδ T cells. In addition, Perforin 1-/- mice had lower levels of IL-17 than their wild-type littermates. Our results identified a critical function of perforin-mediated neurotoxicity in the ischemic brain, suggesting that targeting perforin-mediated neurotoxicity in brain-resident microglia and invading perforin+CD45+ immune cells may be a potential strategy for the treatment of ischemic stroke.

11.
Aging Dis ; 9(2): 249-261, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29896414

RESUMO

A cascade of pathological processes is triggered in the lesion area after ischemic stroke. Unfortunately, our understanding of these complicated molecular events is incomplete. In this investigation, we sought to better understand the detailed molecular and inflammatory events occurring after ischemic stroke. RNA-seq technology was used to identify whole gene expression profiles at days (D1, D3, D7, D14, D21) after focal cerebral ischemia in mice. Enrichment analyses based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for the differentially expressed genes (DEGs) were then analyzed. Inflammation-related genes that were significantly expressed after stroke were selected for analysis and the temporal expression patterns of pro-inflammatory and anti-inflammatory genes were reported. These data illustrated that the number of DEGs increased accumulatively after cerebral ischemia. In summary, there were 1967 DEGs at D1, 2280 DEGs at D3, 2631 DEGs at D7, 5516 DEGs at D14 and 7093 DEGs at D21. The significantly enriched GO terms also increased. 58 GO terms and 18 KEGG pathways were significantly enriched at all inspected time points. We identified 87 DEGs which were functionally related to inflammatory responses. The expression levels of pro-inflammation related genes CD16, CD32, CD86, CD11b, Tumour necrosis factor α (TNF-α), Interleukin 1ß (IL-1ß) increased over time and peaked at D14. Anti-inflammation related genes Arginase 1 (Arg1) and Chitinase-like 3 (Ym1) peaked at D1 while IL-10, Transforming growth factor ß (TGF-ß) and CD206, which were induced at 1 day after cerebral ischemia, peaked by 7 to 14 days. These gene profile changes were potentially linked to microglia/macrophage phenotype changes and could play a role in astroglial activation. This study supplies new insights and detailed information on the molecular events and pathological mechanisms that occur after experimental ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA