RESUMO
Inflammatory bowel disease (IBD) is a considerable threat to human health with a significant risk for colorectal cancer (CRC). However, currently, both the molecular pathogenesis and therapeutic treatment of IBD remain limited. In this report, using both systemic and intestinal epithelium-specific gene knockout mouse models, we demonstrate that FBXO22, a substrate receptor within the SKP1-Cullin 1-F-box family of E3 ubiquitin ligases, plays an inhibitory role in the Azoxymethane/Dextran Sodium Sulfate-induced colorectal inflammatory responses and CRC. FBXO22 targets the serine 2448-phosphorylated form of mammalian mechanistic target of rapamycin (pS2448-mTOR) for ubiquitin-dependent degradation. This proteolytic targeting effect is established based on multiple lines of evidence including the results of colon tissue immunoblots, analysis of cultured cells with altered abundance of FBXO22 by depletion or overexpression, comparison of protein decay rate, effects on mTOR substrates S6K1 and 4E-BP1, analysis of protein-protein interactions, phosphor-peptide binding and competition, as well as reconstituted and cellular ubiquitination. Finally, we have shown that mTOR inhibitor rapamycin (RAPA) was able to alleviate the effects of fbxo22 deletion on colorectal inflammatory response and CRC. These RAPA effects are correlated with the ability of RAPA to inhibit pS2448-mTOR, pS6K1, and p4E-BP1. Collectively, our data support a suppressive role for FBXO22 in colorectal inflammation signaling and CRC initiation by targeting pS2448-mTOR for degradation.
Assuntos
Colite , Neoplasias Colorretais , Proteínas F-Box , Camundongos Knockout , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Colite/metabolismo , Colite/induzido quimicamente , Camundongos , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Fosforilação , Proteólise/efeitos dos fármacos , Azoximetano/toxicidade , Carcinogênese/metabolismo , Carcinogênese/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Receptores Citoplasmáticos e NuclearesRESUMO
Multiple sclerosis, and its murine model experimental autoimmune encephalomyelitis (EAE), is a neurodegenerative autoimmune disease of the CNS characterized by T cell influx and demyelination. Similar to other autoimmune diseases, therapies can alleviate symptoms but often come with side effects, necessitating the exploration of new treatments. We recently demonstrated that the Cullin-RING E3 ubiquitin ligase 4b (CRL4b) aided in maintaining genome stability in proliferating T cells. In this study, we examined whether CRL4b was required for T cells to expand and drive EAE. Mice lacking Cul4b (Cullin 4b) in T cells had reduced EAE symptoms and decreased inflammation during the peak of the disease. Significantly fewer CD4+ and CD8+ T cells were found in the CNS, particularly among the CD4+ T cell population producing IL-17A, IFN-γ, GM-CSF, and TNF-α. Additionally, Cul4b-deficient CD4+ T cells cultured in vitro with their wild-type counterparts were less likely to expand and differentiate into IL-17A- or IFN-γ-producing effector cells. When wild-type CD4+ T cells were activated in vitro in the presence of the recently developed CRL4 inhibitor KH-4-43, they exhibited increased apoptosis and DNA damage. Treatment of mice with KH-4-43 following EAE induction resulted in stabilized clinical scores and significantly reduced numbers of T cells and innate immune cells in the CNS compared with control mice. Furthermore, KH-4-43 treatment resulted in elevated expression of p21 and cyclin E2 in T cells. These studies support that therapeutic inhibition of CRL4 and/or CRL4-related pathways could be used to treat autoimmune disease.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Interleucina-17/metabolismo , Proteínas Culina/metabolismo , Linfócitos T CD4-Positivos , Camundongos Endogâmicos C57BLRESUMO
Ubiquitination often generates lysine 48-linked polyubiquitin chains that signal proteolytic destruction of the protein target. A significant subset of ubiquitination proceeds by a priming/extending mechanism, in which a substrate is first monoubiquitinated with a priming E2-conjugating enzyme or a set of E3 ARIH/E2 enzymes specific for priming. This is then followed by ubiquitin (Ub) chain extension catalyzed by an E2 enzyme capable of elongation. This report provides further insights into the priming/extending mechanism. We employed reconstituted ubiquitination systems of substrates CK1α (casein kinase 1α) and ß-catenin by Cullin-RING E3 Ub ligases (CRLs) CRL4CRBN and CRL1ßTrCP, respectively, in the presence of priming E2 UbcH5c and elongating E2 Cdc34b (cell division cycle 34b). We have established a new "apyrase chase" strategy that uncouples priming from chain elongation, which allows accurate measurement of the decay rates of the ubiquitinated substrate with a defined chain length. Our work has revealed highly robust turnover of monoubiquitinated ß-catenin that empowers efficient polyubiquitination. The results of competition experiments suggest that the interactions between the ubiquitinated ß-catenin and CRL1ßTrCP are highly dynamic. Moreover, ubiquitination of the Ub-modified ß-catenin appeared more resistant to inhibition by competitors than the unmodified substrate, suggesting tighter binding with CRL1ßTrCP. These findings support a role for conjugated Ub in enhancing interactions with E3.
Assuntos
Ubiquitina , Ubiquitinação , beta Catenina , beta Catenina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Cullin (CUL)-RING (Really Interesting New Gene) E3 ubiquitin (Ub) ligases (CRLs) are the largest E3 family. The E3 CRL core ligase is a subcomplex formed by the CUL C-terminal domain bound with the ROC1/RBX1 RING finger protein, which acts as a hub that mediates and organizes multiple interactions with E2, Ub, Nedd8, and the ARIH family protein, thereby resulting in Ub transfer to the E3-bound substrate. This report describes the modulation of CRL-dependent ubiquitination by small molecule compounds including KH-4-43, #33, and suramin, which target the CRL core ligases. We show that both KH-4-43 and #33 inhibit the ubiquitination of CK1α by CRL4CRBN. However, either compound's inhibitory effect on this reaction is significantly reduced when a neddylated form of CRL4CRBN is used. On the other hand, both #33 and KH-4-43 inhibit the ubiquitination of ß-catenin by CRL1ß-TrCP and Nedd8-CRL1ß-TrCP almost equally. Thus, neddylation of CRL1ß-TrCP does not negatively impact the sensitivity to inhibition by #33 and KH-4-43. These findings suggest that the effects of neddylation to alter the sensitivity of CRL inhibition by KH-4-43/#33 is dependent upon the specific CRL type. Suramin, a compound that targets CUL's basic canyon, can effectively inhibit CRL1/4-dependent ubiquitination regardless of neddylation status, in contrast to the results observed with KH-4-43/#33. This observed differential drug sensitivity of KH-4-43/#33 appears to echo CUL-specific Nedd8 effects on CRLs as revealed by recent high-resolution structural biology efforts. The highly diversified CRL core ligase structures may provide opportunities for specific targeting by small molecule modulators.
Assuntos
Ligantes , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Culina/metabolismo , Suramina/farmacologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Proteína NEDD8/metabolismoRESUMO
Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.
Assuntos
Cinesinas , Tubulina (Proteína) , beta Carioferinas/metabolismo , Acetilação , Actinas/metabolismo , Animais , Cinesinas/genética , Mamíferos/metabolismo , Meiose , Camundongos , Oócitos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismoRESUMO
Cellular senescence significantly affects the proliferative and differentiation capacities of mesenchymal stem cells (MSCs). Identifying key regulators of senescence and exploring potential intervention strategies, including drug-based approaches, are active areas of research. In this context, S-adenosyl-l-methionine (SAM), a critical intermediate in sulfur amino acid metabolism, emerges as a promising candidate for mitigating MSC senescence. In a hydrogen peroxide-induced MSC aging model (100 µM for 2 hours), SAM (50 and 100 µM) was revealed to alleviate the senescence of MSCs, and also attenuated the level of reactive oxygen species and enhanced the adipogenic and osteogenic differentiation in senescent MSCs. In a premature aging mouse model (subcutaneously injected with 150 mg/kg/day d-galactose in the neck and back for 7 weeks), SAM (30 mg/kg/day by gavage for 5 weeks) was shown to delay the overall aging process while increasing the number and thickness of bone trabeculae in the distal femur. Mechanistically, activation of PI3K/AKT signaling and increased phosphorylation of forkhead box O3 (FOXO3a) was proved to be associated with the antisenescence role of SAM. These findings highlight that the PI3K/AKT/FOXO3a axis in MSCs could play a crucial role in MSCs senescence and suggest that SAM may be a potential therapeutic drug for MSCs senescence and related diseases.
Assuntos
Senescência Celular , Proteína Forkhead Box O3 , Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , S-Adenosilmetionina , Transdução de Sinais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Senescência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Masculino , Humanos , Camundongos Endogâmicos C57BLRESUMO
Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.
Assuntos
Meiose , Fuso Acromático , Feminino , Camundongos , Animais , Fuso Acromático/metabolismo , Metáfase , Oócitos/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas Repressoras/metabolismo , Cinesinas/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.
Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , MetáfaseRESUMO
Ultrafast imaging can capture the dynamic scenes with a nanosecond and even femtosecond temporal resolution. Complementarily, phase imaging can provide the morphology, refractive index, or thickness information that intensity imaging cannot represent. Therefore, it is important to realize the simultaneous ultrafast intensity and phase imaging for achieving as much information as possible in the detection of ultrafast dynamic scenes. Here, we report a single-shot intensity- and phase-sensitive compressive sensing-based coherent modulation ultrafast imaging technique, shortened as CS-CMUI, which integrates coherent modulation imaging, compressive imaging, and streak imaging. We theoretically demonstrate through numerical simulations that CS-CMUI can obtain both the intensity and phase information of the dynamic scenes with ultrahigh fidelity. Furthermore, we experimentally build a CS-CMUI system and successfully measure the intensity and phase evolution of a multimode Q-switched laser pulse and the dynamical behavior of laser ablation on an indium tin oxide thin film. It is anticipated that CS-CMUI enables a profound comprehension of ultrafast phenomena and promotes the advancement of various practical applications, which will have substantial impact on fundamental and applied sciences.
RESUMO
Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.
Assuntos
Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Camundongos , Masculino , Proteínas de Sinalização YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacologia , Camundongos Knockout , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Acetiltransferase N-Terminal E/metabolismo , Via de Sinalização Hippo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células Cultivadas , Transdução de Sinais , Acetiltransferases N-Terminal/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
BACKGROUND: By interacting with bone marrow mesenchymal stem cells (BMSCs) and regulating their function through exosomes, bone macrophages play crucial roles in various bone-related diseases. Research has highlighted a notable increase in the number of M1 macrophages in glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH). Nevertheless, the intricate crosstalk between M1 macrophages and BMSCs in the glucocorticoid-stimulated environment has not been fully elucidated, and the underlying regulatory mechanisms involved in the occurrence of GA-ONFH remain unclear. METHODS: We employed in vivo mouse models and clinical samples from GA-ONFH patients to investigate the interactions between M1 macrophages and BMSCs. Immunofluorescence staining was used to assess the colocalization of M1 macrophages and BMSCs. Flow cytometry and transcriptomic analysis were performed to evaluate the impact of exosomes derived from normal (n-M1) and glucocorticoid-stimulated M1 macrophages (GC-M1) on BMSC differentiation. Additionally, miR-1a-3p expression was altered in vitro and in vivo to assess its role in regulating adipogenic differentiation. RESULTS: In vivo, the colocalization of M1 macrophages and BMSCs was observed, and an increase in M1 macrophage numbers and a decrease in bone repair capabilities were further confirmed in both GA-ONFH patients and mouse models. Both n-M1 and GC-M1 were identified as contributors to the inhibition of osteogenic differentiation in BMSCs to a certain extent via exosome secretion. More importantly, exosomes derived from GC-M1 macrophages exhibited a heightened capacity to regulate the adipogenic differentiation of BMSCs, which was mediated by miR-1a-3p. In vivo and in vitro, miR-1a-3p promoted the adipogenic differentiation of BMSCs by targeting Cebpz and played an important role in the onset and progression of GA-ONFH. CONCLUSION: We demonstrated that exosomes derived from GC-M1 macrophages disrupt the balance between osteogenic and adipogenic differentiation in BMSCs, contributing to the pathogenesis of GA-ONFH. Inhibiting miR-1a-3p expression, both in vitro and in vivo, significantly mitigates the preferential adipogenic differentiation of BMSCs, thus slowing the progression of GA-ONFH. These findings provide new insights into the regulatory mechanisms underlying GA-ONFH and highlight potential therapeutic targets for intervention.
Assuntos
Adipogenia , Diferenciação Celular , Exossomos , Necrose da Cabeça do Fêmur , Glucocorticoides , Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Glucocorticoides/farmacologia , Adipogenia/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/patologia , Masculino , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Modelos Animais de Doenças , FemininoRESUMO
Cullin-RING (really intersting new gene) E3 ubiquitin ligases (CRLs) are the largest E3 family and direct numerous protein substrates for proteasomal degradation, thereby impacting a myriad of physiological and pathological processes including cancer. To date, there are no reported small-molecule inhibitors of the catalytic activity of CRLs. Here, we describe high-throughput screening and medicinal chemistry optimization efforts that led to the identification of two compounds, 33-11 and KH-4-43, which inhibit E3 CRL4 and exhibit antitumor potential. These compounds bind to CRL4's core catalytic complex, inhibit CRL4-mediated ubiquitination, and cause stabilization of CRL4's substrate CDT1 in cells. Treatment with 33-11 or KH-4-43 in a panel of 36 tumor cell lines revealed cytotoxicity. The antitumor activity was validated by the ability of the compounds to suppress the growth of human tumor xenografts in mice. Mechanistically, the compounds' cytotoxicity was linked to aberrant accumulation of CDT1 that is known to trigger apoptosis. Moreover, a subset of tumor cells was found to express cullin4 proteins at levels as much as 70-fold lower than those in other tumor lines. The low-cullin4-expressing tumor cells appeared to exhibit increased sensitivity to 33-11/KH-4-43, raising a provocative hypothesis for the role of low E3 abundance as a cancer vulnerability.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Inibidores Enzimáticos/química , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Propylparaben (PrPB) is a known endocrine disrupting chemicals that is widely applied as preservative in pharmaceuticals, food and cosmetics. PrPB has been detected in human urine samples and human serum and has been proven to cause functional decline in reproduction. However, the direct effects of PrPB on mammalian oocyte are still unknown. Here, we demonstrationed that exposure to PrPB disturbed mouse oocyte maturation in vitro, causing meiotic resumption arrest and first polar body extrusion failure. Our results indicated that 600⯵M PrPB reduced the rate of oocyte germinal vesicle breakdown (GVBD). Further research revealed that PrPB caused mitochondrial dysfunction and oxidative stress, which led to oocyte DNA damage. This damage further disturbed the activity of the maturation promoting factor (MPF) complex Cyclin B1/ Cyclin-dependent kinase 1 (CDK1) and induced G2/M arrest. Subsequent experiments revealed that PrPB exposure can lead to spindle morphology disorder and chromosome misalignment due to unstable microtubules. In addition, PrPB adversely affected the attachment between microtubules and kinetochore, resulting in persistent activation of BUB3 amd BubR1, which are two spindle-assembly checkpoint (SAC) protein. Taken together, our studies indicated that PrPB damaged mouse oocyte maturation via disrupting MPF related G2/M transition and SAC depended metaphase-anaphase transition.
Assuntos
Ciclo Celular , Exposição Ambiental , Oócitos , Parabenos , Parabenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Feminino , Animais , Camundongos , Disruptores Endócrinos/toxicidade , Camundongos Endogâmicos ICR , Corpos Polares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fuso Acromático/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Microtúbulos/efeitos dos fármacosRESUMO
This paper proposes a wind-speed-adaptive resonant piezoelectric energy harvester for offshore wind energy collection (A-PEH). The device incorporates a coil spring structure, which sets the maximum threshold of the output rotational frequency, allowing the A-PEH to maintain a stable output rotational frequency over a broader range of wind speeds. When the maximum output excitation frequency of the A-PEH falls within the sub-resonant range of the piezoelectric beam, the device becomes wind-speed-adaptive, enabling it to operate in a sub-resonant state over a wider range of wind speeds. Offshore winds exhibit an annual average speed exceeding 5.5 m/s with significant variability. Drawing from the characteristics of offshore winds, a prototype of the A-PEH was fabricated. The experimental findings reveal that in wind speed environments, the device has a startup wind speed of 4 m/s, and operates in a sub-resonant state when the wind speed exceeds 6 m/s. At this point, the A-PEH achieves a maximum open-circuit voltage of 40 V and an average power of 0.64 mW. The wind-speed-adaptive capability of the A-PEH enhances its ability to harness offshore wind energy, showcasing its potential applications in offshore wind environments.
RESUMO
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Assuntos
Anti-Infecciosos , Alimentos Fermentados , Probióticos , Humanos , Alimento Funcional , AntioxidantesRESUMO
Elucidating the quality markers(Q-markers) of traditional Chinese medicines is essential for understanding the mechanisms of action and promoting the rational use of traditional Chinese medicines as well as for developing traditional Chinese medicine-derived drugs. Studies have shown that surface plasmon resonance(SPR) is promising in this field. This study proposed a method based on pull-down with SPR chips to predict the Q-markers of Angong Niuhuang pills(AGNHP). Firstly, 71 main chemical components of AGNHP were analyzed by UPLC-Q-TOF-MS, and then network pharmacology was employed to predict the potential targets of AGNHP against stroke. Secondly, the STAT3 protein chip was constructed, and the extract of AGNHP was recovered by pull-down of the SPR system for STAT3 ligand. The potential active ingredients were collected, enriched, and identified as coptisine, palmatine, epiberberine, berberine, worenine, demethyleneberberine, jatrorrhizine, tetrahydrocoptisine, baicalein, and baicalin methyl ester. Next, the affinity constants of the 10 active ingredients were determined as 44.7, 44, 58.1, 51.3, 39.7, 32.1, 49.2, 69.1, 19.7, and 24.9 µmol·L~(-1), respectively. The molecular docking results showed that the 10 compounds could compete for binding with STAT3. This is the first report that SPR combined with UPLC-Q-TOF-MS is reliable and feasible for determining the active ingredients of AGNHP at the molecular level from complex systems. STAT3 could be used as a potential target for the biological quality evaluation of AGNHP.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas , Ressonância de Plasmônio de Superfície , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Controle de Qualidade , Humanos , Espectrometria de Massa com Cromatografia LíquidaRESUMO
The pancreas contains exocrine glands, which release enzymes (e.g., amylase, trypsin, and lipase) that are important for digestion and islets, which produce hormones. Digestive enzymes and hormones are secreted from the pancreas into the duodenum and bloodstream, respectively. Growing evidence suggests that the roles of the pancreas extend to not only the secretion of digestive enzymes and hormones but also to the regulation of intestinal homeostasis and inflammation (e.g., mucosal defense to pathogens and pathobionts). Organ crosstalk between the pancreas and intestine is linked to a range of physiological, immunological, and pathological activities, such as the regulation of the gut microbiota by the pancreatic proteins and lipids, the retroaction of the gut microbiota on the pancreas, the relationship between inflammatory bowel disease, and pancreatic diseases. We herein discuss the current understanding of the pancreas-intestinal barrier axis and the control of commensal bacteria in intestinal inflammation.
Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Homeostase , Hormônios , Humanos , Inflamação , Mucosa Intestinal , Intestinos , PâncreasRESUMO
We show that a generic relativistic membrane with in-plane pressure and surface density having the same sign is unstable with respect to a series of warping mode instabilities with high wave numbers. We also examine the criteria of instability for commonly studied exotic compact objects with membranes, such as gravastars, anti-de Sitter bubbles, and thin-shell wormholes. For example, a gravastar which satisfies the weak energy condition turns out to be dynamically unstable. A thin-layer black hole mimicker is stable only if it has positive pressure and negative surface density (such as a wormhole), or vice versa.
Assuntos
Membranas , Simulação de Dinâmica MolecularRESUMO
BACKGROUND: Trichinosis is a worldwide food-borne zoonotic parasitic disease, which is mainly obtained by ingesting undercooked meat containing infected larvae. The purpose of our article is to introduce and discuss two rare cases of pleural effusion caused by Trichinella spiralis. CASE PRESENTATION: Here we described two male patients who presented to the respiratory department of our hospital with a massive unilateral pleural effusion, their serum eosinophils were in the normal range, laboratory serological tests revealed that Trichinella spiralis IgG antibody was positive. After the oral administration of antiparasitic drugs, the pleural effusion of two patients was completely absorbed. CONCLUSION: Both patients were diagnosed with Trichinosis complicated with pleural effusion, which is very rare in the clinic and easy to be misdiagnosed because of normal eosinophils.
Assuntos
Derrame Pleural , Trichinella spiralis , Triquinelose , Animais , Humanos , Masculino , Triquinelose/complicações , Triquinelose/diagnóstico , Triquinelose/tratamento farmacológico , Ensaio de Imunoadsorção Enzimática , Carne/parasitologia , Derrame Pleural/diagnóstico , Derrame Pleural/etiologia , Anticorpos Anti-Helmínticos , LarvaRESUMO
BACKGROUND: No studies have investigated the role of IPI in assessing the prognosis of locally advanced rectal cancer (LARC) patients undergoing nCRT. OBJECTIVE: We attempted to combine neutrophil-to-lymphocyte ratio (NLR) and serum lactate dehydrogenase (sLDH) to generate a new rectal immune prognostic index (RIPI) to explore whether RIPI is associated with LARC prognosis. We aimed to identify whether there is a population that might benefit from RIPI in LARC. METHODS: LARC patients who underwent radical surgery after Neoadjuvant chemoradiotherapy (nCRT) were enrolled between February 2012 and May 2017. Based on the best cut-off points of NLR and sLDH, we developed RIPI. The patients were grouped as follows: (1) good, RIPI = 0, good, 0 factors; (2) poor, RIPI = 1, 1 or 2 factors. RESULTS: This study enrolled 642 patients. In yp TNM stage II patients, 5-year disease-free survival (DFS) differed significantly between the RIPI = 1 and RIPI = 0 groups (p = 0.03). Five-year DFS did not differ significantly between IPI = 0 and IPI = 1 groups in ypCR, stage I, stage II, and stage III. In multivariate analysis, the significant factor predicting DFS was pre-nCRT RIPI score (p = 0.035). CONCLUSION: The pre-nCRT RIPI was closely related to the prognosis of LARC patients undergoing nCRT. Particularly, RIPI is significant in evaluating the prognosis of ypTNM stage II LARC patients who underwent radical resection after nCRT.