Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 15(9): 6128-34, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26262899

RESUMO

Outstanding results have been achieved in the localization of optical electric fields via ultrasmall plasmonic cavities, paving the way to the subdiffractive confinement of local electromagnetic fields. However, due to the intrinsic constraints related to conventional architectures, no comparable squeezing factors have been managed yet for the magnetic counterpart of radiation, practically hindering the detection and manipulation of magneto-optical effects at the nanoscale. Here, we observe a strong magnetic field nanofocusing in the infrared, promoted by the induction of a coil-type Fano resonance. By triggering the coil current via a quadrupole-like plasmonic mode, we straightforwardly boost the enhancement of the infrared magnetic field and perform its efficient squeezing in localized nanovolumes.

2.
Nano Lett ; 14(6): 3166-71, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24849081

RESUMO

The possibility to develop nanosystems with appreciable magnetic response at optical frequencies has been a matter of intense study in the past few years. This aim was strongly hindered by the saturation of the magnetic response of "natural" materials beyond the THz regime. Recently, in order to overcome such limitation, it has been considered to enhance the magnetic fields through the induction of displacement currents triggered by plasmonic resonances. Here we investigate a nanoassembly supporting the hybridization of an electric and magnetic plasmonic mode in Fano resonance conditions. Taking advantage of the enhancement properties owned by such interferential resonance, we have been able to generate an intense and localized magnetic hot-spot in the near-infrared spectral region.

3.
Sci Rep ; 5: 11237, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26057661

RESUMO

The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA