Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cardiovasc Res ; 74(3): 515-25, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17391657

RESUMO

OBJECTIVE: C-type natriuretic peptide (CNP) has recently been suggested to represent an endothelium-derived hyperpolarising factor (EDHF) in the mammalian resistance vasculature and, as such, important in the regulation of local blood flow and systemic blood pressure. Additionally, this peptide has been shown to protect against ischaemia-reperfusion injury and inhibits leukocyte and platelet activation. Herein, we use a novel, selective natriuretic peptide receptor-C (NPR-C) antagonist (M372049) to highlight the pivotal contribution of CNP/NPR-C signalling in the EDHF-dependent regulation of vascular tone and investigate the mechanism(s) underlying the release and biological activity of CNP. METHODS: In vitro pharmacological investigation was conducted in rat (Sprague-Dawley) aorta and mesenteric resistance arteries. Relaxant responses to CNP, atrial natriuretic peptide (ANP), the nitric oxide donor spermine-NONOate (SPER-NO) and the endothelium-dependent vasodilator, acetylcholine (ACh) were examined in the absence and presence of M372049 or inhibitor cocktails shown previously to block endothelium-dependent dilatation in the resistance vasculature. RT-PCR was employed to characterize the expression of NPR subtypes in the vessels studied. RESULTS: M372049 produced concentration-dependent inhibition of the vasorelaxant activity of CNP in rat isolated mesenteric resistance arteries but not aorta; in contrast, M372049 did not affect relaxations to ANP or SPER-NO in either vessel. M372049 or ouabain alone produced small, significant inhibition of EDHF-dependent relaxations in mesenteric arteries and in combination acted synergistically to abolish such responses. A combination of M372049 with established inhibitors of EDHF-dependent relaxation revealed that multiple, distinct pathways coordinate the bioactivity of EDHF in the resistance vasculature, and that CNP/NPR-C signalling represents a major component. CONCLUSIONS: These data substantiate CNP/NPR-C signalling as a fundamental pathway underlying EDHF-dependent regulation of vascular tone in the rat mesenteric resistance vasculature. An increased understanding of the physiological roles of CNP/NPR-C signalling in the vasculature (now facilitated by the identification of a selective NPR-C antagonist) should aid determination of the (patho)physiological importance of EDHF and might provide the rationale for the design of novel therapeutics.


Assuntos
Fatores Biológicos/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Oligopeptídeos/farmacologia , Quinoxalinas/farmacologia , Receptores do Fator Natriurético Atrial/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Animais , Aorta , Fator Natriurético Atrial/farmacologia , Bário/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Artérias Mesentéricas , Ouabaína/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Espermina/análogos & derivados , Espermina/farmacologia
2.
Hypertension ; 62(2): 426-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23753406

RESUMO

A rise in intraluminal pressure triggers vasoconstriction in resistance arteries, which is associated with local generation of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Importantly, dysregulation of 20-HETE synthesis and activity has been implicated in several cardiovascular disease states, including ischemic disease, hypertension, and stroke; however, the exact molecular pathways involved in mediating 20-HETE bioactivity are uncertain. We investigated whether 20-HETE activates the transient receptor potential vanilloid 1 (TRPV1) and thereby regulates vascular function and blood pressure. We demonstrate that 20-HETE causes dose-dependent increases in blood pressure, coronary perfusion pressure (isolated Langendorff), and pressure-induced constriction of resistance arteries (perfusion myography) that is substantially attenuated in TRPV1 knockout mice and by treatment with the neurokinin 1 receptor antagonist RP67580. Furthermore, we show that both channel activation (via patch-clamping of dorsal root ganglion neurons) and vessel constriction are enhanced under inflammatory conditions, and our findings indicate a predominant role for protein kinase A-mediated sensitization of TRPV1 in these phenomena. Finally, we identify a prominence of these pathway in males compared with females, an effect we relate to reduced protein kinase A-induced phosphorylation of TRPV1. 20-HETE-induced activation of TRPV1, in part, mediates pressure-induced myogenic constriction and underlies 20-HETE-induced elevations in blood pressure and coronary resistance. Our findings identify a novel vasoconstrictor 20-HETE/TRPV1 pathway that may offer potential for therapeutic targeting in cardiovascular diseases associated with elevated 20-HETE implicated in dysregulated organ blood flow, such as stroke or hypertension.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Canais de Cátion TRPV/fisiologia , Vasoconstrição/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Isoindóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Caracteres Sexuais
3.
Br J Pharmacol ; 164(2b): 584-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21457229

RESUMO

BACKGROUND AND PURPOSE: C-type natriuretic peptide (CNP) is an endothelium-derived vasorelaxant, exerting anti-atherogenic actions in the vasculature and salvaging the myocardium from ischaemic injury. The cytoprotective effects of CNP are mediated in part via the G(i) -coupled natriuretic peptide receptor (NPR)3. As GPCRs are well-known to control cell proliferation, we investigated if NPR3 activation underlies effects of CNP on endothelial and vascular smooth muscle cell mitogenesis. EXPERIMENTAL APPROACH: Proliferation of human umbilical vein endothelial cells (HUVEC), rat aortic smooth muscle cells (RAoSMC) and endothelial and vascular smooth muscle cells from NPR3 knockout (KO) mice was investigated in vitro. KEY RESULTS: CNP (1 pM-1 µM) facilitated HUVEC proliferation and inhibited RAoSMC growth concentration-dependently. The pro- and anti-mitogenic effects of CNP were blocked by the NPR3 antagonist M372049 (10 µM) and the extracellular signal-regulated kinase (ERK) 1/2 inhibitor PD98059 (30 µM) and were absent in cells from NPR3 KO mice. Activation of ERK 1/2 by CNP was inhibited by Pertussis toxin (100 ng·mL⁻¹) and M372049 (10 µM). In HUVEC, ERK 1/2 activation enhanced expression of the cell cycle promoter, cyclin D1, whereas in RAoSMC, ERK 1/2 activation increased expression of the cell cycle inhibitors p21(waf1/cip1) and p27(kip1) . CONCLUSIONS AND IMPLICATIONS: A facet of the vasoprotective profile of CNP is mediated via NPR3-dependent ERK 1/2 phosphorylation, resulting in augmented endothelial cell proliferation and inhibition of vascular smooth muscle growth. This pathway may offer an innovative approach to reversing the endothelial damage and vascular smooth muscle hyperplasia that characterize many vascular disorders.


Assuntos
Células Endoteliais/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Animais , Aorta/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Processos de Crescimento Celular/fisiologia , Células Cultivadas , GMP Cíclico/metabolismo , Ciclina D1/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Oligopeptídeos/farmacologia , Fosforilação/fisiologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/genética , Transdução de Sinais/fisiologia
4.
Br J Pharmacol ; 160(8): 2045-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20649600

RESUMO

BACKGROUND AND PURPOSE: Excessive production of nitric oxide (NO) by inducible NO synthase (iNOS) is thought to underlie the vascular dysfunction, systemic hypotension and organ failure that characterize endotoxic shock. Plasma levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are raised in animal models and humans with endotoxic shock and correlate with the associated cardiovascular dysfunction. Since both NO and natriuretic peptides play important roles in cardiovascular homeostasis via activation of guanylate cyclase-linked receptors, we used mice lacking natriuretic peptide receptor (NPR)-A (NPR1) to establish if natriuretic peptides contribute to the cardiovascular dysfunction present in endotoxic shock. EXPERIMENTAL APPROACH: Wild-type (WT) and NPR-A knockout (KO) mice were exposed to lipopolysaccharide (LPS) and vascular dysfunction (in vitro and in vivo), production of pro-inflammatory cytokines, and iNOS expression and activity were evaluated. KEY RESULTS: LPS-treated WT animals exhibited a marked fall in mean arterial blood pressure (MABP) whereas NPR-A KO mice maintained MABP throughout. LPS administration caused a greater suppression of vascular responses to the thromboxane-mimetic U46619, ANP, acetylcholine and the NO-donor spermine-NONOate in WT versus NPR-A KO mice. This differential effect on vascular function was paralleled by reduced pro-inflammatory cytokine production, iNOS expression and activity (plasma [NO(x)] and cyclic GMP). CONCLUSIONS AND IMPLICATIONS: These observations suggest that NPR-A activation by natriuretic peptides facilitates iNOS expression and contributes to the vascular dysfunction characteristic of endotoxic shock. Pharmacological interventions that target the natriuretic peptide system may represent a novel approach to treat this life-threatening condition.


Assuntos
Hemodinâmica , Receptores do Fator Natriurético Atrial/deficiência , Choque Séptico/prevenção & controle , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Pressão Sanguínea , GMP Cíclico/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hemodinâmica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores do Fator Natriurético Atrial/genética , Choque Séptico/induzido quimicamente , Choque Séptico/genética , Choque Séptico/imunologia , Choque Séptico/metabolismo , Choque Séptico/fisiopatologia , Fatores de Tempo , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatação , Vasodilatadores/farmacologia
5.
J Biol Chem ; 283(29): 20027-36, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18474600

RESUMO

Soluble guanylyl cyclase (sGC) is the principal receptor for NO and plays a ubiquitous role in regulating cellular function. This is exemplified in the cardiovascular system where sGC governs smooth muscle tone and growth, vascular permeability, leukocyte flux, and platelet aggregation. As a consequence, aberrant NO-sGC signaling has been linked to diseases including hypertension, atherosclerosis, and stroke. Despite these key (patho)physiological roles, little is known about the expressional regulation of sGC. To address this deficit, we have characterized the promoter activity of human alpha(1) and beta(1) sGC genes in a cell type relevant to cardiovascular (patho)physiology, primary human aortic smooth muscle cells. Luciferase reporter constructs revealed that the 0.3- and 0.5-kb regions upstream of the transcription start sites were optimal for alpha(1) and beta(1) sGC promoter activity, respectively. Deletion of consensus sites for c-Myb, GAGA, NFAT, NF-kappaB(p50), and CCAAT-binding factor(s) (CCAAT-BF) revealed that these are the principal transcription factors regulating basal sGC expression. In addition, under pro-inflammatory conditions, the effects of the strongest alpha(1) and beta(1) sGC repressors were enhanced, and enzyme expression and activity were reduced; in particular, NF-kappaB(p50) is pivotal in regulating enzyme expression under such conditions. NO itself also elicited a cGMP-independent negative feedback effect on sGC promoter activity that is mediated, in part, via CCAAT-BF activity. In sum, these data provide a systematic characterization of the promoter activity of human sGC alpha(1) and beta(1) subunits and identify key transcription factors that govern subunit expression under basal and pro-inflammatory (i.e. atherogenic) conditions and in the presence of ligand NO.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Região 5'-Flanqueadora/genética , Sítios de Ligação , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Guanilato Ciclase/antagonistas & inibidores , Humanos , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Guanilil Ciclase Solúvel , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA