RESUMO
In this work, a set of eight technical lignin samples from various botanical origins and production processes were characterized for their chemical composition, higher heating value, size distribution, dust explosion sensitivity and severity, thermal hazard characteristics and biodegradability, in further support of their sustainable use. More specifically, safety-focused parameters have been assessed in terms of consistency with relating physico-chemical properties determined for the whole set of technical lignins. The results emphasized the heterogeneity and variability of technical lignins and the subsequent need for a comprehensive characterization of new lignin feedstocks arising from novel biorefineries. Indeed, significant differences were revealed between the samples in terms of hazards sensitivity. This first comparative physico-chemical safety profiling of technical lignins could be useful for the hazard analysis and the safe design of the facilities associated with large scale valorisation of biomass residues such as lignins, targeting "zero waste" sustainable conversion of bioresources.
RESUMO
Phthalate esters, mainly di-ethylhexylphthalate (DEHP), represent a class of chemicals primarily used as plasticizers for polyvinyl chloride in a wide range of domestic and industrial applications. These phthalate esters are low-toxicity environmental contaminants. To address these drawbacks, POLYSORB® ID 37, a blend of diesters obtained from esterification of isosorbide with plant-based fatty acids, was developed. The company can now offer PVC manufacturers a new product which competes with phthalates and other such chemicals. The market for plasticizers is very important, and ROQUETTE intends to provide a more sustainable and safer product. Isosorbide diester is bio-based (made from glucose and vegetable fatty acids). This plasticizer is registered in REACH regulation for high volumes (>1000 T/year). Risk assessment was obtained by conducting a wide range of biodegradability and toxicological protocols, using rodent models, according to established guidelines. Overall, all of the toxicological and biodegradability studies demonstrated that POLYSORB® ID 37 is nontoxic to mammalian life and is readily biodegradable.
RESUMO
Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.
Assuntos
Biodegradação Ambiental , Relação Quantitativa Estrutura-Atividade , Xenobióticos/química , Xenobióticos/metabolismo , Carbazóis/química , Carbazóis/metabolismo , Bases de Dados Factuais , Anidridos Ftálicos/química , Anidridos Ftálicos/metabolismo , Triazinas/química , Triazinas/metabolismoRESUMO
Extracting DNA directly from micro-organisms living in soil is a crucial step for the molecular analysis of soil microbial communities. However, the use of a plethora of different soil DNA extraction protocols, each with its own bias, makes accurate data comparison difficult. To overcome this problem, a method for soil DNA extraction was proposed to the International Organization for Standardization (ISO) in 2006. This method was evaluated by 13 independent European laboratories actively participating in national and international ring tests. The reproducibility of the standardized method for molecular analyses was evaluated by comparing the amount of DNA extracted, as well as the abundance and genetic structure of the total bacterial community in the DNA extracted from 12 different soils by the 13 laboratories. High quality DNA was successfully extracted from all 12 soils, despite different physical and chemical characteristics and a range of origins from arable soils, through forests to industrial sites. Quantification of the 16S rRNA gene abundances by real time PCR and analysis of the total bacterial community structure by automated ribosomal intergenic spacer analysis (A-RISA) showed acceptable to good levels of reproducibility. Based on the results of both ring-tests, the method was unanimously approved by the ISO as an international standard method and the normative protocol will now be disseminated within the scientific community. Standardization of a soil DNA extraction method will improve data comparison, facilitating our understanding of soil microbial diversity and soil quality monitoring.