Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(6): e18050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400579

RESUMO

Current treatment options available for prostate cancer (PCa) patients have many adverse side effects and hence, new alternative therapies need to be explored. Anticancer potential of various phytochemicals derived from Calotropis procera has been studied in many cancers but no study has investigated the effect of leaf extract of C. procera on PCa cells. Hence, we investigated the effect of C. procera leaf extract (CPE) on cellular properties of androgen-independent PC-3 and androgen-sensitive 22Rv1 cells. A hydroalcoholic extract of C. procera was prepared and MTT assay was performed to study the effect of CPE on viability of PCa cells. The effect of CPE on cell division ability, migration capability and reactive oxygen species (ROS) production was studied using colony formation assay, wound-healing assay and 2',7'-dichlorodihydrofluorescein diacetate assay, respectively. Caspase activity assay and LDH assay were performed to study the involvement of apoptosis and necrosis in CPE-mediated cell death. Protein levels of cell cycle, antioxidant, autophagy and apoptosis markers were measured by western blot. The composition of CPE was identified using untargeted LC-MS analysis. Results showed that CPE decreased the viability of both the PCa cells, PC-3 and 22Rv1, in a dose- and time-dependent manner. Also, CPE significantly inhibited the colony-forming ability, migration and endogenous ROS production in both the cell lines. Furthermore, CPE significantly decreased NF-κB protein levels and increased the protein levels of the cell cycle inhibitor p27. A significant increase in expression of autophagy markers was observed in CPE-treated PC-3 cells while autophagy markers were downregulated in 22Rv1 cells after CPE exposure. Hence, it can be concluded that CPE inhibits PCa cell viability possibly by regulating the autophagy pathway and/or altering the ROS levels. Thus, CPE can be explored as a possible alternative therapeutic agent for PCa.


Assuntos
Calotropis , Porcelana Dentária , Ligas Metalo-Cerâmicas , Neoplasias da Próstata , Titânio , Masculino , Humanos , Linhagem Celular Tumoral , Calotropis/química , Calotropis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Androgênios/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Autofagia , Proliferação de Células
2.
Small ; 18(9): e2107053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35076173

RESUMO

The current electric vehicles (EVs) face many challenges like limited charge capacity, low miles/charge, and long charging times. Herein, these issues are addressed by developing a dual-function supercapacitor-based energy-storing carbon fiber reinforced polymer (e-CFRP) that can store electrical energy and function as the structural component for the EV's body shell. This is achieved by developing a unique design, vertically aligned graphene sheets attached to carbon fiber electrodes on which different metal oxides are deposited to obtain high-energy density electrodes. A high-strength multilayer e-CFRP assembly is fabricated using an alternate layer patterning configuration of epoxy and polyacrylamide gel electrolyte. The e-CFRP so developed delivers a high areal energy density of 0.31 mWh cm-2 at 0.3 mm thickness and a high tensile strength of 518 MPa, bending strength of 477 MPa, and impact strength of 2666 J m-1 . To show its application in EVs, a toy car's body panel is fabricated with e-CFRP and the toy car is able to operate using the energy stored in its frame. Moreover, when integrated with a solar cell, this composite powers an Internet of Things device, showing its feasibility in communication satellites.

3.
Mol Hum Reprod ; 28(5)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35451485

RESUMO

Epigenetic changes alter the expression of genes at both pre- and post-transcriptional levels without changing their DNA sequence. Accumulating evidence suggests that such changes can modify cellular behavior and characteristics required during development and in response to various extracellular stimuli. Trophoblast cells develop from the outermost trophectoderm layer of the blastocyst and undergo many phenotypic changes as the placenta develops. One such phenotypic change is differentiation of the epithelial natured cytotrophoblasts into the mesenchymal natured extravillous trophoblasts. The extravillous trophoblasts are primarily responsible for invading into the maternal decidua and thus establishing connection with the maternal spiral arteries. Any dysregulation of this process can have adverse effects on the pregnancy outcome. Hence, tight regulation of this epithelial-mesenchymal transition (EMT) is critical for successful pregnancy. This review summarizes the recent research on the epigenetic regulation of the EMT occurring in the trophoblast cells during placental development. The functional significance of chemical modifications of DNA and histone, which regulate transcription, as well as non-coding RNAs, which control gene expression post-transcriptionally, is discussed in relation to trophoblast biology.


Assuntos
Transição Epitelial-Mesenquimal , Trofoblastos , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Placenta/metabolismo , Placentação/genética , Gravidez , Trofoblastos/metabolismo
4.
Phys Chem Chem Phys ; 24(30): 18306-18320, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880610

RESUMO

Strong-field ionization of CH3Cl using femtosecond laser pulses, and the subsequent two-body dissociation of CH3Cl2+ along Hn+ (n = 1-3) and HCl+ forming pathways, have been experimentally studied in a home-built COLTRIMS (cold target recoil ion momentum spectrometer) setup. The single ionization rate of CH3Cl was obtained experimentally by varying the laser intensity from 1.6 × 1013 W cm-2 to 2.4 × 1014 W cm-2 and fitted with the rate obtained using the MO-ADK model. Additionally, the yield of Hn+ ions resulting from the dissociation of all charge states of CH3Cl was determined as a function of intensity and pulse duration (and chirp). Next, we identified four two-body breakup pathways of CH3Cl2+, which are H+ + CH2Cl+, H2+ + CHCl+, H3+ + CCl+, and CH2+ + HCl+, using photoion-photoion coincidence. The yields of the four pathways were found to decrease on increasing the intensity from I = 4.2 × 1013 W cm-2 to 2I = 8.5 × 1013 W cm-2, which was attributed to enhanced ionization of the dication before it can dissociate. As a function of pulse duration (and chirp), the Hn+ forming pathways were suppressed, while the HCl+ forming pathway was enhanced. To understand the excited state dynamics of the CH3Cl dication, which controls the outcome of dissociation, we obtained the total kinetic energy release distributions of the pathways and the two-dimensional coincidence momentum images and angular distributions of the fragments. We inferred that the Hn+ forming pathways originate from the dissociation of CH3Cl dications from weakly attractive metastable excited states having a long dissociation time, while for the HCl+ forming pathway, the dication dissociates from repulsive states and therefore, undergoes rapid dissociation. Finally, quantum chemical calculations have been performed to understand the intramolecular proton migration and dissociation of the CH3Cl dication along the pathways mentioned above. Our study explains the mechanism of Hn+ and HCl+ formation and confirms that intensity and pulse duration can serve as parameters to influence the excited state dynamics and hence, the outcome of the two-body dissociation of CH3Cl2+.

5.
Chem Biodivers ; 19(10): e202200489, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36050285

RESUMO

2-Halogenatedphenyl benzoxazole-5-carboxylic acids with mono-halogen (chloro, bromo and fluoro) substituted at ortho-, meta- and para-positions on the phenyl ring were designed and synthesized based on significance of presence of halogen in increasing number of marketed halogenated drugs and importance of benzoxazoles. These 2-alogenatedphenylbenzoxazole-5-carboxylic acids and their methyl esters were screened for anti-inflammatory activity, and cytotoxicity. 2-(3-Chlorophenyl)benzoxaole-5-carboxylic acid (6b) exhibited significant anti-inflammatory activity with IC50 values of 0.103 mM almost equivalent to the standard drug ibuprofen (0.101 mM). 2-(4-Chlorophenyl)benzoxaole-5-carboxylic acid (6c) showed excellent cytotoxic activity against 22Rv1 cells (human prostate carcinoma epithelial cell lines) with IC50 value of 1.54 µM better than that of standard drug doxorubicin having IC50 value of 2.32 µM. More importantly, the selectivity index of this potential molecule was found to be 57.74. Molecular docking analysis resulted in good binding interactions of these compounds with their respective biochemical targets viz. Cyclooxygenase-2 and aldo-keto reductase IC3.


Assuntos
Antineoplásicos , Benzoxazóis , Humanos , Simulação de Acoplamento Molecular , Benzoxazóis/farmacologia , Benzoxazóis/química , Ciclo-Oxigenase 2/metabolismo , Ibuprofeno , Citotoxinas , Ácidos Carboxílicos/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/química , Anti-Inflamatórios/farmacologia , Doxorrubicina , Aldo-Ceto Redutases/metabolismo , Estrutura Molecular
6.
Opt Express ; 29(2): 974-982, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726322

RESUMO

We present three high finesse tunable monolithic fiber Fabry-Perot cavities (FFPCs) with high passive mechanical stability. The fiber mirrors are fixed inside slotted glass ferrules, which guarantee an inherent alignment of the resonators. An attached piezoelectric element enables fast tuning of the FFPC resonance frequency over the entire free-spectral range for two of the designs. Stable locking of the cavity resonance is achieved for sub-Hertz feedback bandwidths, demonstrating the high passive stability. At the other limit, locking bandwidths up to tens of kilohertz, close to the first mechanical resonance, can be obtained. The root-mean-square frequency fluctuations are suppressed down to ∼2% of the cavity linewidth. Over a wide frequency range, the frequency noise is dominated by the thermal noise limit of the system's mechanical resonances. The demonstrated small footprint devices can be used advantageously in a broad range of applications like cavity-based sensing techniques, optical filters or quantum light-matter interfaces.

7.
Faraday Discuss ; 228(0): 432-450, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576353

RESUMO

Strong-field ionization induces various complex phenomena like bond breaking, intramolecular hydrogen migration, and bond association in polyatomic molecules. The H-atom migration and bond formation in CH3OH induced by intense femtosecond laser pulses are investigated using a Velocity Map Imaging (VMI) spectrometer. Various laser parameters like intensity (1.5 × 1013 W cm-2-12.5 × 1013 W cm-2), pulse duration (29 fs and 195 fs), wavelength (800 nm and 1300 nm), and polarization (linear and circular) can serve as a quantum control for hydrogen migration and the yield of Hn+ (n = 1-3) ions which have been observed in this study. Further, in order to understand the ejection mechanism of the hydrogen molecular ions H2+ and H3+ from singly-ionized CH3OH, quantum chemical calculations were employed. The dissociation processes of CH3OH+ occurring by four dissociative channels to form CHO+ + H3, H3+ + CHO, CH2+ + H2O, and H2O+ + CH2 are studied. Using the combined approach of experiments and theory, we have successfully explained the mechanism of intramolecular hydrogen migration and predicted the dissociative channels of singly-ionized CH3OH.

8.
Soft Matter ; 17(16): 4304-4316, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908562

RESUMO

We report, for the first time, the self-assembly of an acyl-thiourea based sensor, N-{(6-methoxy-pyridine-2-yl) carbamothioyl}benzamide (NG1), with panchromatic fluorescent fibres and its dual-sensing properties for the sequential detection of Cu2+ ions and lactic acid. The panchromatic fibres formed by NG1 were disrupted in the presence of Cu2+ ions and this was accompanied by a visible colour change in the solution from colourless to yellow. The addition of lactic acid to the NG1 + Cu2+ solution, on the other hand, induced re-aggregation to fibrillar structures and the colour of the solution again changed to colourless. Hence, it may be surmised that the disaggregation and re-aggregation impart unique dual-sensing properties to NG1 for the sequential detection of Cu2+ ions and lactic acid. The application of NG1 as a selective sensor for Cu2+ ions and lactic acid has been assessed in detail by UV-visible and fluorescence spectroscopy. Furthermore, two structural variants of NG1, namely, NG2 and NG3, were synthesized, which suggest the crucial role of pyridine in imparting panchromatic emission properties and of both pyridine and acyl-thiourea side chain in the binding of Cu2+ ions. The O-methoxy group plays an important part in making NG1 the most sensitive probe of its structural analogs. Finally, the utility of NG1 for the sequential and cellular detection of Cu2+ ions and lactic acid was studied in human RPE cells. The experimental results of the interaction of NG1 with Cu2+ ions and lactic acid have also been validated theoretically by using quantum chemical calculations based on density functional theory (DFT). To the best of our knowledge, this is the first report wherein a dual sensor for Cu2+ ions and lactate ions is synthesized. More importantly, the aggregation properties of the sensor have been studied extensively and an interesting correlation of the photophysical properties of the probe with its self-assembling behavior has been elucidated.


Assuntos
Cobre , Ácido Láctico , Corantes , Corantes Fluorescentes , Humanos , Íons , Espectrometria de Fluorescência
9.
J Phys Chem A ; 125(12): 2653-2665, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33734710

RESUMO

Hydrogen energy has received significant attention in the renewable energy sector due to its high energy density and environmentally friendly nature. For the efficient hydrogen generation from water, the hydrogen evolution reaction (HER) has to be optimized, which requires a highly efficient electrocatalyst. In this work, a hybrid structure of the ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (C2mim TfO) and (TiO2)n nanoclusters with n = 2-12 has been investigated in the pursuit of new catalyst materials for effective HER. We have employed state-of-the-art density functional theory (DFT) computations to depict the HER catalytic performance of IL/(TiO2)n hybrid systems through Gibbs free energy (ΔG) and an exchange-current-based "volcano" plot. We have explored the effect of the TiO2 nanoclusters on the structural and electronic characteristics of the IL, calculating the adsorption energy, the energies of the highest occupied (HOMO) and lowest unoccupied molecular orbitals (LUMO), the HOMO-LUMO band gap Eg, and the work function ϕ. The variation in size of the TiO2 nanocluster in the IL/(TiO2)n hybrid system was found to have a significant influence on the electronic properties. The obtained results suggest that the ΔG of the hydrogen adsorption is remarkably close to the ideal value (0 eV) for the IL/(TiO2)5 system, which also reflects from the volcano plot, suggesting that this complex is the best HER catalyst among the studied systems; it might be even better than the traditional Pt-based catalyst. Thus, the present work suggests ways for the experimental realization of low-cost and multifunctional IL-based hybrid catalysts for clean and renewable hydrogen energy production.

10.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830338

RESUMO

Insulin/IGF-1-like signaling (IIS) plays a crucial, conserved role in development, growth, reproduction, stress tolerance, and longevity. In Caenorhabditis elegans, the enhanced longevity under reduced insulin signaling (rIIS) is primarily regulated by the transcription factors (TFs) DAF-16/FOXO, SKN-1/Nrf-1, and HSF1/HSF-1. The specific and coordinated regulation of gene expression by these TFs under rIIS has not been comprehensively elucidated. Here, using RNA-sequencing analysis, we report a systematic study of the complexity of TF-dependent target gene interactions during rIIS under analogous genetic and experimental conditions. We found that DAF-16 regulates only a fraction of the C. elegans transcriptome but controls a large set of genes under rIIS; SKN-1 and HSF-1 show the opposite trend. Both of the latter TFs function as activators and repressors to a similar extent, while DAF-16 is predominantly an activator. For expression of the genes commonly regulated by TFs under rIIS conditions, DAF-16 is the principal determining factor, dominating over the other two TFs, irrespective of whether they activate or repress these genes. The functional annotations and regulatory networks presented in this study provide novel insights into the complexity of the gene regulatory networks downstream of the IIS pathway that controls diverse phenotypes, including longevity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Genoma Helmíntico , Insulina/metabolismo , Fatores de Transcrição/genética , Transcriptoma , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Redes Reguladoras de Genes , Longevidade/genética , Anotação de Sequência Molecular , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo
11.
Nanotechnology ; 31(43): 435405, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32629437

RESUMO

Flexible smart electronics require their energy storage device to be flexible in nature. Developing high-performance flexible energy storage devices require direct integration of electrode active materials on current collectors to satisfy the high electronic/ionic conductivity and long-term durability requirements. Herein, we develop a flexible all-solid-state asymmetric supercapacitor comprised of reduced graphene oxide (rGO) and core/shell tungsten trioxide/tungsten disulfide (WO3/WS2) nanowire based electrodes. The electrodes synthesized via electrochemical deposition and chemical vapor deposition avoided the necessity to use non-conductive binders and offered excellent cyclic stability. The structural integrity provided by the rGO and WO3/WS2 electrodes facilitated excellent electrochemical stability with capacitance retention of 90% and 100% after 10 000 charge-discharge cycles, respectively. An all-solid-state device provides a voltage window of 1.5 V and more than 70% capacitance retention after 10 000 charge-discharge cycles. Providing 97% capacitance retention upon mechanical bending reveals its potential to be used as an energy storage devices in flexible electronics.

12.
Phys Chem Chem Phys ; 22(31): 17687-17704, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32726378

RESUMO

The influence of the length of the alkyl chain and water molecules on the hydrogen-bond interaction of the chloride anion and imidazolium-based cation of the ionic liquid (IL) Cnmim Cl (where n = 2, 4, 6, 8, and 10) was investigated by combining attenuated total internal reflection infrared (ATR-IR) spectroscopy and density functional theory (DFT) calculations. Here, for the first time, the conformational isomerism of the alkyl chain of Cnmim Cl (n = 2, 4, 6, 8, and 10) is identified by marker IR bands. The IR peak at 1470 cm-1 related to the alkyl chain vibration exhibits a significant perturbation in its intensity and further shows a red shift upon increasing alkyl chain length. This indeed might be a marker IR band for conformational isomerism and also an indication of the interaction of the alkyl chain with the chloride anion. Further, in the C-H vibration region of the IR spectra, a significant variation of the IR intensities was observed for the νs(CH2) and νas(CH2-CH3) modes at 2931 and 2976 cm-1, respectively. These bands can be considered as further markers for conformational isomerism of the alkyl chain. Moreover, the peak at 2976 cm-1 assigned to an alkyl chain vibration reveals the maximum red shift of 20 cm-1 for n = 10, which suggests charge redistribution among ion-pairs as a result of the alkyl chain variations. Noticeably, the C2-H vibration does not show any significant change of its wavenumber position, suggesting that the alkyl chain length does not interfere with the hydrogen bond interaction between C2-H and the Cl anion. This was also evident from the DFT-calculated bond strength between C2-H and Cl, which remains unchanged upon varying the alkyl chain length. In aqueous solutions, blue shifts of the v(C2-H) band by +65, +60, +67, +62 and +62 cm-1 for Cnmim Cl (n = 2, 4, 6, 8, and 10) are observed, respectively. These results point to a weakening of the hydrogen bond between cation and anion, which is also supported and validated by results of the solvent (water) effect obtained using the polarized continuum model (PCM) of the DFT calculations.

13.
Small ; 15(44): e1902606, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31512364

RESUMO

Graphene electrode-based supercapacitors are in high demand due to their superior electrochemical characteristics. A major bottleneck of using the supercapacitors for commercial applications lies in their inferior electrode cycle life. Herein, a simple and facile method to fabricate highly efficient supercapacitor electrodes using pristine graphene sheets vertically stacked and electrically connected to the carbon fibers which can result in vertically aligned graphene-carbon fiber nanostructure is developed. The vertically aligned graphene-carbon fiber electrode prepared by electrophoretic deposition possesses a mesoporous 3D architecture which enabled faster and efficient electrolyte-ion diffusion with a gravimetric capacitance of 333.3 F g-1 and an areal capacitance of 166 mF cm-2 . The electrodes displayed superlong electrochemical cycling stability of more than 100 000 cycles with 100% capacitance retention hence promising for long-lasting supercapacitors. Apart from the electrochemical double layer charge storage, the oxygen-containing surface moieties and α-Ni(OH)2 present on the graphene sheets enhance the charge storage by faradaic reactions. This enables the assembled device to provide an excellent gravimetric energy density of 76 W h kg-1 with a 100% capacitance retention even after 1000 bending cycles. This study opens the door for developing high-performing flexible graphene electrodes for wearable energy storage applications.

14.
Med Microbiol Immunol ; 208(6): 855-868, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31377870

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that utilizes the quorum-sensing (QS) process to regulate the production of different virulence factors and biofilm. N-3-oxo-dodecanoyl-L-homoserine lactone (C12) is a key QS molecule of P. aeruginosa which interacts with the mammalian immune cells and modulates their function. Here, we investigated the molecular mechanism of C12-induced apoptosis in neutrophils. Our data show that C12 causes apoptosis in neutrophils through an elevation in cytosolic and mitochondrial Ca2+ levels. Besides, C12 induces phosphatidylserine (PS) exposure, mitochondrial membrane potential (MMP) depolarization, mitochondrial permeability transition pore (MPTP) formation and mitochondrial reactive oxygen species (mROS) generation. C12-induced rise in intracellular Ca2+ level is majorly contributed by endoplasmic reticulum store through the activation of inositol 1, 4, 5-triphosphate receptor. Intracellular calcium chelation inhibited C12-induced mitochondrial dysfunction and apoptosis. Further, inhibition of mitochondrial Ca2+ uniporter by ruthenium red or Ru360 abrogated C12-induced mitochondrial Ca2+ uptake, MMP loss, MPTP opening, mROS production, and PS exposure. These mechanistic insights are expected to provide a better understanding of the role of C12 in P. aeruginosa pathogenesis.


Assuntos
4-Butirolactona/análogos & derivados , Apoptose , Sinalização do Cálcio/efeitos dos fármacos , Homosserina/análogos & derivados , Mitocôndrias/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , 4-Butirolactona/metabolismo , Voluntários Saudáveis , Homosserina/metabolismo , Humanos , Neutrófilos/patologia
15.
J Phys Chem A ; 123(23): 4948-4963, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31088056

RESUMO

The effect of the anion size and electronegativity of halide-based anions (Cl-, Br-, I-, and BF4-) on the interionic interaction in 1-ethyl-3-methylimidazolium-based ionic liquids (ILs) C2mim X (X = Cl, Br, I, and BF4) is studied by a combined approach of experiments (Raman, IR, UV-vis spectroscopy) and quantum chemical calculations. The fingerprint region of the Raman spectra of these C2mim X ion-pairs provides evidence of the presence of the conformational isomerism in the alkyl chain of the C2mim+ cation. The Raman and IR bands of the imidazolium C2-H stretch vibration for C2mim X (X = Cl, Br, I, and BF4) were noticeably blue-shifted with the systematic change in size of anions and the electronegativity. The observed blue shift in the C2-H stretch vibration follows the order C2mim BF4 > C2mim I > C2mim Br > C2mim Cl, which essentially indicates the strong hydrogen bonding in the C2mim Cl ion-pair. DFT calculations predict at least four configurations for the cation-anion interaction. On the basis of relative optimized energies and basis-set-superposition-error (BSSE) corrected binding energies for all ion-pair configurations, the most active site for the anion interaction was found at the C2H position of the cation. Besides information about the C2H position, our DFT results give insights into the anion interaction with the ethyl and methyl chain of the cation, which was also confirmed experimentally [ Chem. Commun. 2015 , 51 , 3193 ]. The anion interaction at the C2H site of the cation favors a planar geometry in C2mim X for X = Cl, Br, and I; however, for BF4, the system prefers a nonplanar geometry where the anion is located over the imidazolium ring. TD-DFT results were used to analyze the observed UV-vis absorption spectra in a more adequate way giving insights into the electronic structure of the ILs. Overall, a reasonable correlation between the observed and the DFT-predicted results is established.

16.
Indian J Microbiol ; 59(4): 500-507, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31762514

RESUMO

Amidase from Bacillus sp. APB-6 with very good acyltransferase activity was purified to homogeneity with a purification fold of 3.68 and 53.20% enzyme yield. The purified protein's subunit molecular mass was determined approximately 42 kDa. Hyperactivity of the enzyme was observed at pH 7.5 (150 mM, potassium-phosphate buffer) and 50 °C of incubation. An enhancement in activity up to 42% was recorded with ethylenediaminetetraacetic acid and dithiothreitol. The kinetic parameter K m values for substrates: acetamide and hydroxylamine-hydrochloride were 73.0 and 153 mM, respectively. Further, the V max for acyltransferase activity was 1667 U/mg of protein and the K i for acetamide was calculated as 37.0 mM. The enzyme showed tolerance to various organic solvents (10%, v/v) and worked well in the biphasic reaction medium. The acyltransferase activity in presence of solvents i.e. biphasic medium may prove highly favorable for the transformation of hydrophobic amides, which otherwise is not possible in simple aqueous phase.

17.
Bioprocess Biosyst Eng ; 41(8): 1225-1232, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29748858

RESUMO

Butyramide is a commodity chemical having wide range of applications from material science to biological sciences including synthesis of therapeutic drugs, hydroxamic acids, and electrorheological fluids. The nitrile hydratase protein of Bacillus sp. APB-6 was explored to develop an efficient biocatalytic process for the biotransformation of butyronitrile to butyramide using free and immobilized cells. The reaction conditions for nitrile hydratase activity were not affected after immobilization of the free cells and the optimum pH and temperature for both free and immobilized cells were 8.0 and 55 °C, respectively. In a 1-l batch reaction, complete conversion of 3000 mM butyronitrile to butyramide was achieved using free and immobilized cells. Immobilization of the cells further enhanced their operational stability and reusability in repetitive cycles of butyramide production. This bioconversion resulted in the formation of butyramide at a rate of 522.0 g h-1 g-1 dcw.


Assuntos
Amidas/metabolismo , Bacillus/metabolismo , Células Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio
19.
J Opt Soc Am A Opt Image Sci Vis ; 30(5): 910-5, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23695322

RESUMO

Rapid and fine control over the phase of light is demonstrated by transferring digitally generated phase jumps from radio-frequency electrical signals onto light by means of acousto-optic interaction, and the underlying mechanism elucidated. This technique was used to engineer optical phase noise by tailoring the statistics of phase jumps in the electrical signal, which was then quantified using visibility measurements of the interference fringes. Such controlled dephasing finds applications in modern experiments involving the spread or diffusion of light in optical networks. In addition, the zero-delay intensity-intensity correlation [G2(0)] values of light emerging from different ports of a well-stabilized Mach-Zehnder interferometer in the presence of engineered partial phase noise are calculated, and it is shown analytically how the dark port of the interferometer nontrivially becomes a weak source of highly correlated or bunched photons.

20.
Cureus ; 15(1): e33502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36756009

RESUMO

Introduction Sacroiliac joint (SIJ) pain is a common source of low back pain. Though this condition can be treated with conservative measures, there is a subset of patients who fail to respond to conservative treatment. For them, surgical treatment using minimally invasive techniques could be considered. There are currently a number of SIJ fixation methods described. However, there is no case series reported on posterior oblique approach. Therefore, in this paper, the authors report their experience with the Sacrix system via the posterior oblique approach. Method In this series, 19 patients aged 44-84 years, with a median of 58 years, underwent SIJ fusion using this technique. This is a posterior oblique approach in which two screws are inserted into the ilium through the posterior part of the iliac crest and then advanced into the sacrum through the SIJ. Results The follow-up is between 7 and 30 months, with a median of 12 months. Eighteen patients had excellent pain relief. There was no complication from the procedure, and the blood loss was minimal. All eight patients who had follow-up radiographs showed solid fusion. Conclusion Posterior oblique approach for SIJ fusion is a minimally invasive procedure that proved to be effective and safe in this series. It also resulted in solid radiographic fusion, decreased pain, and improved function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA