Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Biol Chem ; 300(5): 107252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569936

RESUMO

Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP , Modelos Moleculares , Proteínas de Plantas , Proteínas RGS , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Oryza/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Proteínas RGS/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Relação Estrutura-Atividade , Selaginellaceae/genética , Selaginellaceae/metabolismo , Estrutura Quaternária de Proteína
2.
Artigo em Inglês | MEDLINE | ID: mdl-39167823

RESUMO

Molecular inter-species dialogue between leguminous plants and nitrogen-fixing rhizobia results in the development of symbiotic root nodules. This is initiated by several nodulation-related receptors present on the surface of root hair epidermal cells. We have shown previously that specific subunits of heterotrimeric G proteins and their regulatory RGS (regulator of G-protein signaling) proteins act as molecular links between the receptors and downstream components during nodule formation in soybeans. Nod factor receptor 1 (NFR1) interacts with and phosphorylates RGS proteins to regulate the G-protein cycle. Symbiosis receptor-like kinases (SymRK) phosphorylate Gα to make it inactive and unavailable for Gßγ. We now show that like NFR1, SymRK also interacts with the RGS proteins to phosphorylate them. Phosphorylated RGS has higher GTP accelerating activity, which favors conversion of active Gα to its inactive form. Phosphorylation of RGS proteins is physiologically relevant, as overexpression of a phospho-mimic version of RGS protein enhances nodule formation in soybean. These results reveal an intricate fine-tuning of the G-protein signaling during nodulation, where a negative regulator (Gα) is effectively deactivated by RGS due to the concerted efforts of several receptor proteins to ensure adequate nodulation.

3.
New Phytol ; 241(3): 1222-1235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37929754

RESUMO

Mosses hold a unique position in plant evolution and are crucial for protecting natural, long-term carbon storage systems such as permafrost and bogs. Due to small stature, mosses grow close to the soil surface and are exposed to high levels of CO2 , produced by soil respiration. However, the impact of elevated CO2 (eCO2 ) levels on mosses remains underexplored. We determined the growth responses of the moss Physcomitrium patens to eCO2 in combination with different nitrogen levels and characterized the underlying physiological and metabolic changes. Three distinct growth characteristics, an early transition to caulonema, the development of longer, highly pigmented rhizoids, and increased biomass, define the phenotypic responses of P. patens to eCO2 . Elevated CO2 impacts growth by enhancing the level of a sugar signaling metabolite, T6P. The quantity and form of nitrogen source influences these metabolic and phenotypic changes. Under eCO2 , P. patens exhibits a diffused growth pattern in the presence of nitrate, but ammonium supplementation results in dense growth with tall gametophores, demonstrating high phenotypic plasticity under different environments. These results provide a framework for comparing the eCO2 responses of P. patens with other plant groups and provide crucial insights into moss growth that may benefit climate change models.


Assuntos
Dióxido de Carbono , Nitrogênio , Nitrogênio/metabolismo , Dióxido de Carbono/farmacologia , Açúcares , Biomassa , Solo
4.
Cell ; 136(1): 136-48, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19135895

RESUMO

In plants, G proteins modulate signaling by the stress hormone, abscisic acid (ABA). We identify and characterize two novel Arabidopsis proteins that show homology to an orphan vertebrate GPCR (GPR89) and interact with the sole Arabidopsis G protein alpha subunit, GPA1, but also have intrinsic GTP-binding and GTPase activity. We have named these proteins GPCR-type G proteins (GTG1 and GTG2). Arabidopsis mutants lacking both GTG1 and GTG2 exhibit ABA hyposensitivity. GTG1 and GTG2 bind ABA specifically. The GDP-bound form of the GTGs exhibits greater ABA binding than the GTP-bound form, the GTPase activity of the GTGs is inhibited by GPA1, and gpa1 null mutants exhibit ABA-hypersensitive phenotypes. These results predict that, unusually, it is the GDP-bound, not the GTP-bound, form of the GTGs that actively relays the signal. We propose that GTG proteins function both as a new type of G protein and as a class of membrane-localized ABA receptors.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , GTP Fosfo-Hidrolases , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Alinhamento de Sequência , Transdução de Sinais
5.
Physiol Mol Biol Plants ; 30(2): 337-347, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623166

RESUMO

The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.

6.
Plant J ; 110(1): 277-291, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35048428

RESUMO

Heterotrimeric G proteins, comprised of Gα, Gß and Gγ subunits, influence signaling in most eukaryotes. In metazoans, G proteins are activated by G protein-coupled receptor (GPCR)-mediated GDP to GTP exchange on Gα; however, the role(s) of GPCRs in regulating plant G-protein signaling remains equivocal. Mounting evidence suggests the involvement of receptor-like kinases (RLKs) in regulating plant G-protein signaling, but their mechanistic details remain scarce. We have previously shown that during Glycine max (soybean) nodulation, the nod factor receptor 1 (NFR1) interacts with G-protein components and indirectly affects signaling. We explored the direct regulation of G-protein signaling by RLKs using protein-protein interactions, receptor-mediated in vitro phosphorylations and the effects of such phosphorylations on soybean nodule formation. Results presented in this study demonstrate a direct, phosphorylation-based regulation of Gα by symbiosis receptor kinase (SymRK). SymRKs interact with and phosphorylate Gα at multiple residues in vitro, including two in its active site, which abolishes GTP binding. Additionally, phospho-mimetic Gα fails to interact with Gßγ, potentially allowing for constitutive signaling by the freed Gßγ. These results uncover an unusual mechanism of G-protein cycle regulation in plants where the receptor-mediated phosphorylation of Gα not only affects its activity but also influences the availability of its signaling partners, thereby exerting a two-pronged check on signaling.


Assuntos
Glycine max , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Fosforilação , Transdução de Sinais , Glycine max/genética , Glycine max/metabolismo , Simbiose
7.
Plant Cell Physiol ; 64(10): 1243-1256, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37572092

RESUMO

The vascular plant-specific, cysteine-rich type III Gγ proteins, which are integral components of the heterotrimeric G-protein complex, play crucial roles in regulating a multitude of plant processes, including those related to crop yield and responses to abiotic stresses. The presence of multiple copies of type III Gγ proteins in most plants and a propensity of the presence of specific truncated alleles in many cultivated crops present an ambiguous picture of their roles in modulating specific responses. AGG3 is a canonical type III Gγ protein of Arabidopsis, and its overexpression in additional model crops offers the opportunity to directly evaluate the effects of protein expression levels on plant phenotypes. We have shown that AGG3 overexpression in the monocot model Setaria viridis leads to an increase in seed yield. In this study, we have investigated the response of the S. viridis plants overexpressing AGG3 to heat stress (HS), one of the most important abiotic stresses affecting crops worldwide. We show that a short span of HS at a crucial developmental time point has a significant effect on plant yield in the later stages. We also show that plants with higher levels of AGG3 are more tolerant to HS. This is attributed to an altered regulation of stress-responsive genes and improved modulation of the photosynthetic efficiency during the stress. Overall, our results confirm that AGG3 plays a crucial role in regulating plant responses to unfavorable environmental conditions and may contribute positively to avoiding crop yield losses.


Assuntos
Arabidopsis , Setaria (Planta) , Arabidopsis/genética , Arabidopsis/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Estresse Fisiológico/genética
8.
New Phytol ; 238(6): 2427-2439, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36918471

RESUMO

Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2 ) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2 environment while transgenerational studies are rare. We aimed to determine transgenerational growth responses in plants after exposure to high CO2 by investigating the direct progeny when returned to baseline CO2 levels. We found that both the flowering plant Arabidopsis thaliana and seedless nonvascular plant Physcomitrium patens continue to display accelerated growth rates in the progeny of plants exposed to high CO2 . We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response. More specifically, the pathway of RNA-directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2 exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metilação de DNA/genética , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Plant Physiol ; 189(3): 1519-1535, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35377452

RESUMO

Heterotrimeric G-protein complexes comprising Gα-, Gß-, and Gγ-subunits and the regulator of G-protein signaling (RGS) are conserved across most eukaryotic lineages. Signaling pathways mediated by these proteins influence overall growth, development, and physiology. In plants, this protein complex has been characterized primarily from angiosperms with the exception of spreading-leaved earth moss (Physcomitrium patens) and Chara braunii (charophytic algae). Even within angiosperms, specific G-protein components are missing in certain species, whereas unique plant-specific variants-the extra-large Gα (XLGα) and the cysteine-rich Gγ proteins-also exist. The distribution and evolutionary history of G-proteins and their function in nonangiosperm lineages remain mostly unknown. We explored this using the wealth of available sequence data spanning algae to angiosperms representing extant species that diverged approximately 1,500 million years ago, using BLAST, synteny analysis, and custom-built Hidden Markov Model profile searches. We show that a minimal set of components forming the XLGαßγ trimer exists in the entire land plant lineage, but their presence is sporadic in algae. Additionally, individual components have distinct evolutionary histories. The XLGα exhibits many lineage-specific gene duplications, whereas Gα and RGS show several instances of gene loss. Similarly, Gß remained constant in both number and structure, but Gγ diverged before the emergence of land plants and underwent changes in protein domains, which led to three distinct subtypes. These results highlight the evolutionary oddities and summarize the phyletic patterns of this conserved signaling pathway in plants. They also provide a framework to formulate pertinent questions on plant G-protein signaling within an evolutionary context.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Evolução Biológica , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Transdução de Sinais/genética
10.
Plant Cell Physiol ; 63(6): 817-828, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35388418

RESUMO

Heterotrimeric G-proteins modulate multiple signaling pathways in many eukaryotes. In plants, G-proteins have been characterized primarily from a few model angiosperms and a moss. Even within this small group, they seem to affect plant phenotypes differently: G-proteins are essential for survival in monocots, needed for adaptation but are nonessential in eudicots, and are required for life cycle completion and transition from the gametophytic to sporophytic phase in the moss Physcomitrium (Physcomitrella) patens. The classic G-protein heterotrimer consists of three subunits: one Gα, one Gß and one Gγ. The Gα protein is a catalytically active GTPase and, in its active conformation, interacts with downstream effectors to transduce signals. Gα proteins across the plant evolutionary lineage show a high degree of sequence conservation. To explore the extent to which this sequence conservation translates to their function, we complemented the well-characterized Arabidopsis Gα protein mutant, gpa1, with Gα proteins from different plant lineages and with the yeast Gpa1 and evaluated the transgenic plants for different phenotypes controlled by AtGPA1. Our results show that the Gα protein from a eudicot or a monocot, represented by Arabidopsis and Brachypodium, respectively, can fully complement all gpa1 phenotypes. However, the basal plant Gα failed to complement the developmental phenotypes exhibited by gpa1 mutants, although the phenotypes that are exhibited in response to various exogenous signals were partially or fully complemented by all Gα proteins. Our results offer a unique perspective on the evolutionarily conserved functions of G-proteins in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Proteínas Heterotriméricas de Ligação ao GTP , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética
11.
New Phytol ; 236(2): 447-463, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35766993

RESUMO

The plant hormone abscisic acid (ABA) plays crucial roles in regulation of stress responses and growth modulation. Heterotrimeric G-proteins are key mediators of ABA responses. Both ABA and G-proteins have also been implicated in intracellular redox regulation; however, the extent to which reversible protein oxidation manipulates ABA and/or G-protein signaling remains uncharacterized. To probe the role of reversible protein oxidation in plant stress response and its dependence on G-proteins, we determined the ABA-dependent reversible redoxome of wild-type and Gß-protein null mutant agb1 of Arabidopsis. We quantified 6891 uniquely oxidized cysteine-containing peptides, 923 of which show significant changes in oxidation following ABA treatment. The majority of these changes required the presence of G-proteins. Divergent pathways including primary metabolism, reactive oxygen species response, translation and photosynthesis exhibited both ABA- and G-protein-dependent redox changes, many of which occurred on proteins not previously linked to them. We report the most comprehensive ABA-dependent plant redoxome and uncover a complex network of reversible oxidations that allow ABA and G-proteins to rapidly adjust cellular signaling to adapt to changing environments. Physiological validation of a subset of these observations suggests that functional G-proteins are required to maintain intracellular redox homeostasis and fully execute plant stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Oxirredução , Reguladores de Crescimento de Plantas/metabolismo , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
J Exp Bot ; 73(13): 4514-4527, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35394025

RESUMO

Plants perceive a multitude of environmental signals and stresses, and integrate their response to them in ways that culminate in modified phenotypes, optimized for plant survival. This ability of plants, known as phenotypic plasticity, is found throughout evolution, in all plant lineages. For any given environment, the specifics of the response to a particular signal may vary depending on the plants' unique physiology and ecological niche. The bryophyte lineage, including mosses, which diverged from the vascular plants ~450-430 million years ago, represent a unique ecological and phylogenetic group in plant evolution. Several aspects of the moss life cycle, their morphology including the presence of specialized tissue types and distinct anatomical features, gene repertoires and networks, as well as the habitat differ significantly from those of vascular plants. To evaluate the outcomes of these differences, we explore the phenotypic responses of mosses to environmental signals such as light, temperature, CO2, water, nutrients, and gravity, and compare those with what is known in vascular plants. We also outline knowledge gaps and formulate testable hypotheses based on the contribution of anatomical and molecular factors to specific phenotypic responses.


Assuntos
Briófitas , Crescimento e Desenvolvimento , Filogenia , Fenômenos Fisiológicos Vegetais , Plantas/genética
13.
Plant J ; 102(2): 207-221, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32034949

RESUMO

Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G-proteins comprised of Gα, Gß, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G-proteins comprised of one canonical and three extra-large Gα, one Gß and three Gγ subunits exists. Because the Gß and Gγ proteins form obligate dimers, the phenotypes of plants lacking the sole Gß or all Gγ genes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gßγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gß remain unexplored. To evaluate such flexible, signal-dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations of Gα and Gß genes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal-dependent interactions between the Gα and Gß proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G-protein networks provides for the adaptability needed to survive under continuously changing environments.


Assuntos
Arabidopsis/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epistasia Genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Redes Reguladoras de Genes , Proteínas Heterotriméricas de Ligação ao GTP/genética , Mutação com Perda de Função , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Especificidade da Espécie
14.
Plant Physiol ; 184(4): 1941-1954, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33082269

RESUMO

Heterotrimeric G-proteins are key modulators of multiple signaling and development pathways in plants and regulate many agronomic traits, including architecture and grain yield. Regulator of G-protein signaling (RGS) proteins are an integral part of the G-protein networks; however, these are lost in many monocots. To assess if the loss of RGS in specific plants has resulted in altered G-protein networks and the extent to which RGS function is conserved across contrasting monocots, we explored G-protein-dependent developmental pathways in Brachypodium distachyon and Setaria viridis, representing species without or with a native RGS, respectively. Artificial microRNA-based suppression of Gα in both species resulted in similar phenotypes. Moreover, overexpression of Setaria italica RGS in B. distachyon resulted in phenotypes similar to the suppression of BdGα This effect of RGS overexpression depended on its ability to deactivate Gα, as overexpression of a biochemically inactive variant protein resulted in plants indistinguishable from the wild type. Comparative transcriptome analysis of B. distachyon plants with suppressed levels of Gα or overexpression of RGS showed significant overlap of differentially regulated genes, corroborating the phenotypic data. These results suggest that despite the loss of RGS in many monocots, the G-protein functional networks are maintained, and Gα proteins have retained their ability to be deactivated by RGS.


Assuntos
Brachypodium/genética , Brachypodium/metabolismo , Evolução Molecular , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Brachypodium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Plantas Geneticamente Modificadas , Setaria (Planta)/crescimento & desenvolvimento
16.
Plant Physiol ; 179(3): 1159-1175, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622152

RESUMO

Heterotrimeric G-proteins influence almost all aspects of plant growth, development, and responses to biotic and abiotic stresses in plants, likely via their interaction with specific effectors. However, the identity of such effectors and their mechanism of action are mostly unknown. While investigating the roles of different G-protein subunits in modulating the oil content in Camelina (Camelina sativa), an oil seed crop, we uncovered a role of Gß proteins in controlling anisotropic cell expansion. Knockdown of Gß genes causes reduced longitudinal and enhanced transverse expansion, resulting in altered cell, tissue, and organ shapes in transgenic plants during vegetative and reproductive development. These plants also exhibited substantial changes in their fatty acid and phospholipid profiles, which possibly leads to the increased oil content of the transgenic seeds. This increase is potentially caused by the direct interaction of Gß proteins with a specific patatin-like phospholipase, pPLAIIIδ. Camelina plants with suppressed Gß expression exhibit higher lipase activity, and show phenotypes similar to plants overexpressing pPLAIIIδ, suggesting that the Gß proteins are negative regulators of pPLAIIIδ. These results reveal interactions between the G-protein-mediated and lipid signaling/metabolic pathways, where specific phospholipases may act as effectors that control key developmental and environmental responses of plants.


Assuntos
Brassicaceae/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Metabolismo dos Lipídeos , Proteínas de Plantas/fisiologia , Brassicaceae/citologia , Brassicaceae/crescimento & desenvolvimento , Proliferação de Células/genética , Forma Celular , Ácidos Graxos/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Fenótipo , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
J Exp Bot ; 71(5): 1742-1751, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31930311

RESUMO

Heterotrimeric G-proteins regulate multiple aspects of plant growth, development, and response to biotic and abiotic stresses. While the core components of heterotrimeric G-proteins and their basic biochemistry are similar in plants and metazoans, key differences exist in their regulatory mechanisms. In particular, the activation mechanisms of plant G-proteins appear diverse and may include both canonical and novel modes. Classical G-protein-coupled receptor-like proteins exist in plants and interact with Gα proteins, but their ability to activate Gα by facilitating GDP to GTP exchange has not been demonstrated. Conversely, there is genetic and functional evidence that plant G-proteins interact with the highly prevalent receptor-like kinases (RLKs) and are phosphorylated by them. This suggests the exciting scenario that in plants the G-proteins integrate RLK-dependent signal perception at the plasma membrane with downstream effectors. Because RLKs are active kinases, it is also likely that the activity of plant G-proteins is regulated via phosphorylation/dephosphorylation rather than GTP-GDP exchange as in metazoans. This review discusses our current knowledge of the possible RLK-dependent regulatory mechanisms of plant G-protein signaling in the context of several biological systems and outlines the diversity that might exist in such regulation.


Assuntos
Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Plantas/enzimologia
18.
J Biol Chem ; 292(39): 16188-16198, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28827312

RESUMO

Heterotrimeric G-proteins, comprising Gα, Gß, and Gγ subunits, regulate key signaling processes in eukaryotes. The Gα subunit determines the status of signaling by switching between inactive GDP-bound and active GTP-bound forms. Unlike animal systems, in which multiple Gα proteins with variable biochemical properties exist, plants have fewer, highly similar Gα subunits that have resulted from recent genome duplications. These proteins exhibit subtle differences in their GTP-binding, GDP/GTP-exchange, and GTP-hydrolysis activities, but the extent to which these differences contribute to affect plant signaling and development remains unknown. To evaluate this, we expressed native and engineered Gα proteins from soybean in an Arabidopsis Gα-null background and studied their effects on modulating a range of developmental and hormonal signaling phenotypes. Our results indicated that inherent biochemical differences in these highly similar Gα proteins are biologically relevant, and some proteins are more flexible than others in influencing the outcomes of specific signals. These observations suggest that alterations in the rate of the G-protein cycle itself may contribute to the specificity of response regulation in plants by affecting the duration of active signaling and/or by the formation of distinct protein-protein complexes. In species such as Arabidopsis having a single canonical Gα, this rate could be affected by regulatory proteins in the presence of specific signals, whereas in plants with multiple Gα proteins, an even more complex regulation may exist, which likely contributes to the specificity of signal-response coupling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Glycine max/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Proteínas de Soja/metabolismo , Substituição de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Duplicação Gênica , Técnicas de Inativação de Genes , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Soja/química , Proteínas de Soja/genética , Glycine max/genética , Técnicas do Sistema de Duplo-Híbrido
19.
Plant J ; 90(3): 466-477, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161903

RESUMO

Modulation of the active versus inactive forms of the Gα protein is critical for the signaling processes mediated by the heterotrimeric G-protein complex. We have recently established that in Arabidopsis, the regulator of G-protein signaling (RGS1) protein and a lipid-hydrolyzing enzyme, phospholipase Dα1 (PLDα1), both act as GTPase-activity accelerating proteins (GAPs) for the Gα protein to attenuate its activity. RGS1 and PLDα1 interact with each other, and RGS1 inhibits the activity of PLDα1 during regulation of a subset of responses. In this study, we present evidence that this regulation is bidirectional. Phosphatidic acid (PA), a second messenger typically derived from the lipid-hydrolyzing activity of PLDα1, is a molecular target of RGS1. PA binds and inhibits the GAP activity of RGS1. A conserved lysine residue in RGS1 (Lys259 ) is directly involved in RGS1-PA binding. Introduction of this RGS1 protein variant in the rgs1 mutant background makes plants hypersensitive to a subset of abscisic acid-mediated responses. Our data point to the existence of negative feedback loops between these two regulatory proteins that precisely modulate the level of active Gα, consequently generating a highly controlled signal-response output.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas RGS/metabolismo , Arabidopsis/efeitos dos fármacos , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Ácidos Fosfatídicos/farmacologia , Fosfolipase D/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
20.
Plant Cell ; 32(12): 3660-3661, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33093143
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA