RESUMO
Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.
Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Sobrevivência Celular/genética , Cromatina/genética , Ciclina E/genética , Ciclina E/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genéticaRESUMO
The iron-sensing protein FBXL5 is the substrate adaptor for a SKP1-CUL1-RBX1 E3 ubiquitin ligase complex that regulates the degradation of iron regulatory proteins (IRPs). Here, we describe a mechanism of FBXL5 regulation involving its interaction with the cytosolic Fe-S cluster assembly (CIA) targeting complex composed of MMS19, FAM96B, and CIAO1. We demonstrate that the CIA-targeting complex promotes the ability of FBXL5 to degrade IRPs. In addition, the FBXL5-CIA-targeting complex interaction is regulated by oxygen (O2) tension displaying a robust association in 21% O2 that is severely diminished in 1% O2 and contributes to O2-dependent regulation of IRP degradation. Together, these data identify a novel oxygen-dependent signaling axis that links IRP-dependent iron homeostasis with the Fe-S cluster assembly machinery.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas F-Box/genética , Chaperonas Moleculares/genética , Complexos Multiproteicos/genética , Complexos Ubiquitina-Proteína Ligase/genética , Proteínas de Ciclo Celular/química , Proteínas F-Box/química , Células HeLa , Homeostase , Humanos , Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Oxigênio/metabolismo , Proteólise , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/químicaRESUMO
The cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery. We find that nucleotide-binding protein 1 (NUBP1/NBP35), cytosolic iron-sulfur assembly component 3 (CIAO3/NARFL), and CIA substrates associate with nucleotide-binding protein 2 (NUBP2/CFD1), a component of the CIA scaffold complex. NUBP2 also weakly associates with the CIA targeting complex (MMS19, CIAO1, and CIAO2B) indicating the possible existence of a higher order complex. Interactions between CIAO3 and the CIA scaffold complex are strengthened upon iron supplementation or low oxygen tension, while iron chelation and reactive oxygen species weaken CIAO3 interactions with CIA components. We further demonstrate that CIAO3 mutants defective in Fe-S cluster binding fail to integrate into the higher order complexes. However, these mutants exhibit stronger associations with CIA substrates under conditions in which the association with the CIA targeting complex is reduced suggesting that CIAO3 and CIA substrates may associate in complexes independently of the CIA targeting complex. Together, our data suggest that CIA components potentially form a metabolon whose assembly is regulated by environmental cues and requires Fe-S cluster incorporation in CIAO3. These findings provide additional evidence that the CIA pathway adapts to changes in cellular environment through complex reorganization.
Assuntos
Proteínas Ferro-Enxofre , Ferro , Citosol/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Enxofre/metabolismoRESUMO
The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation.
Assuntos
Proteínas de Ciclo Celular/genética , DNA Ribossômico/genética , Epigênese Genética , Proteínas Nucleares/genética , RNA Ribossômico/genética , Fator de Transcrição Sp1/genética , Células A549 , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Metilação de DNA , Reparo do DNA , DNA Ribossômico/metabolismo , Eucromatina/química , Eucromatina/metabolismo , Fase G1 , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo , Transcrição GênicaRESUMO
Oligodendrocytes form myelin that ensheaths axons and accelerates the speed of action potential propagation. Oligodendrocyte progenitor cells (OPCs) proliferate and replenish oligodendrocytes. While the myelin-forming role of oligodendrocytes and OPCs is well-established, potential additional roles of these cells are yet to be fully explored. Here, we analyzed the secreted proteome of oligodendrocytes and OPCs in vitro to determine whether these cell types are major sources of secreted proteins in the central nervous system (CNS). Interestingly, we found that both oligodendrocytes and OPCs secret various extracellular matrix proteins. Considering the critical role of neuroinflammation in neurological disorders, we evaluated the responses and potential contributions of oligodendrocytes and OPCs to this process. By characterizing the secreted proteomes of these cells after pro-inflammatory cytokine treatment, we discovered the secretion of immunoregulators such as C2 and B2m. This finding sheds new light on the hitherto underappreciated role of oligodendrocytes and OPCs in actively modulating neuroinflammation. Our study provides a comprehensive and unbiased proteomic dataset of proteins secreted by oligodendrocyte and OPC under both physiological and inflammatory conditions. It revealed the potential of these cells to secrete matrix and signaling molecules, highlighting their multifaceted function beyond their conventional myelin-forming roles.
RESUMO
Astrocytes are morphologically complex cells that serve essential roles. They are widely implicated in central nervous system (CNS) disorders, with changes in astrocyte morphology and gene expression accompanying disease. In the Sapap3 knockout (KO) mouse model of compulsive and anxiety-related behaviors related to obsessive-compulsive disorder (OCD), striatal astrocytes display reduced morphology and altered actin cytoskeleton and Gi-G-protein-coupled receptor (Gi-GPCR) signaling proteins. Here, we show that normalizing striatal astrocyte morphology, actin cytoskeleton, and essential homeostatic support functions by targeting the astrocyte Gi-GPCR pathway using chemogenetics corrected phenotypes in Sapap3 KO mice, including anxiety-related and compulsive behaviors. Our data portend an astrocytic pharmacological strategy for rescuing phenotypes in brain disorders that include compromised astrocyte morphology and tissue support.
Assuntos
Ansiedade , Astrócitos , Asseio Animal , Camundongos Knockout , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Camundongos , Astrócitos/metabolismo , Ansiedade/metabolismo , Ansiedade/genética , Transdução de Sinais/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Asseio Animal/fisiologia , Comportamento Compulsivo/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Transtorno Obsessivo-Compulsivo/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Corpo Estriado/metabolismoRESUMO
As anthropogenic activities continue to introduce various contaminants into the environment, the need for effective monitoring and bioremediation strategies is critical. Fungi, with their diverse enzymatic arsenal, offer promising solutions for the biotransformation of many pollutants. While conventional research reports on ligninolytic, oxidoreductive, and cytochrome P450 (CYP) enzymes, the vast potential of fungi, with approximately 10 345 protein sequences per species, remains largely untapped. This review describes recent advancements in fungal proteomics instruments as well as software and highlights their detoxification mechanisms and biochemical pathways. Additionally, it highlights lesser-known fungal enzymes with potential applications in environmental biotechnology. By reviewing the benefits and challenges associated with proteomics tools, we hope to summarize and promote the studies of fungi and fungal proteins relevant in the environment.
RESUMO
INTRODUCTION: Acellular matrices have historically been applied as biologic scaffolds in surgery, wound care, and tissue engineering, albeit with inconsistent outcomes. One aspect that varies widely between products is the selection of decellularization protocol, yet few studies assess comparative effectiveness of these protocols in preserving mechanics, and protein content. This study characterizes bladder acellular matrix (BAM) using two different detergent and enzymatic protocols, evaluating effects on nuclei and DNA removal (≥90%), structure, tensile properties, and maintenance of extracellular matrix proteins. METHODS: Porcine bladders were decellularized with 0.5% Sodium Dodecyl Sulfate (SDS) or 0.25% Trypsin-hypotonic-Triton X-100 hypertonic (TT)-based agitation protocols, followed by DNase/RNase agents. Characterization of BAM included decellularization efficacy (DAPI, DNA quantification), structure (histology and scanning electron microscopy), tensile testing (Instron 345C-1 mechanical tester), and protein presence and diversity (mass spectrometry). SDS and TT data was directly compared to the same native bladder using two-tailed paired t-tests. Native, TT, and SDS cohorts for tensile testing were compared using one-way ANOVA; Tukey's post-hoc tests for among group differences. RESULTS: Effective nuclei removal was achieved by SDS- and TT-based protocols. However, target DNA removal was achieved with SDS but not TT. SDS more effectively maintained qualitative tissue architecture compared to TT. The tensile modulus of the TT cohort increased, and stretchability decreased after decellularization in both SDS and TT. UTS was unaffected by either protocol. Higher overall diversity and quantity of core matrisome and matrisome-associated proteins was maintained in the SDS vs TT cohort post-decellularization. CONCLUSION: The results indicated that detergent selection affects multiple aspects of the resultant BAM biologic product. In the selected protocols, SDS was superior to TT efficacy, and maintenance of gross tissue architecture as well as maintenance of ECM proteins. Decellularization increased scaffold resistance to deformation in both cohorts. Future studies applying biologic scaffolds must consider the processing method and agents used to ensure that materials selected are optimized for characteristics that will facilitate effective translational use.
Assuntos
Matriz Extracelular , Engenharia Tecidual , Bexiga Urinária , Bexiga Urinária/citologia , Bexiga Urinária/fisiologia , Animais , Suínos , Engenharia Tecidual/métodos , Matriz Extracelular Descelularizada , Alicerces TeciduaisRESUMO
The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-Domain Homolog (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of bdh mutants, revealing a previously overlooked impact on hypocotyl cell elongation. Through detailed analysis of BDH domains, we identified a plant-specific N-terminal domain that facilitates the interaction between BDH and the rest of the complex. Additionally, we uncovered the critical role of the BDH ß-hairpin domain, which is phylogenetically related to metazoan BCL7 SWI/SNF subunits. While phylogenetic analyses did not identify BDH/BCL7 orthologs in fungi, structure prediction modeling demonstrated strong similarities between the SWI/SNF catalytic modules of plants, animals, and fungi, and revealed the yeast Rtt102 protein as a structural homolog of BDH and BCL7. This finding is supported by the ability of Rtt102 to interact with the Arabidopsis catalytic module subunit ARP7 and partially rescue the bdh mutant phenotypes. Further experiments revealed that BDH promotes the stability of the ARP4-ARP7 heterodimer, leading to the partial destabilization of ARP4 in the SWI/SNF complexes. In summary, our study unveils the molecular function of BDH proteins in plant SWI/SNF complexes and suggests that ß-hairpin-containing proteins are evolutionarily conserved subunits crucial for ARP heterodimer stability and SWI/SNF activity across eukaryotes.
RESUMO
Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases (NMT). Myristoylation is emerging as a promising cancer therapeutic target; however, the molecular determinants of sensitivity to NMT inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that NMTs are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS-mutant background. Inhibition of myristoylation decreases cell viability in vitro and tumor growth in vivo. Inhibition of myristoylation causes mitochondrial ferrous iron overload, oxidative stress, elevated protein poly (ADP)-ribosylation, and death by parthanatos. Furthermore, NMT inhibitors sensitized lung carcinoma cells to platinum-based chemotherapy. Unexpectedly, the mitochondrial transporter translocase of inner mitochondrial membrane 17 homolog A (TIM17A) is a critical target of myristoylation inhibitors in these cells. TIM17A silencing recapitulated the effects of NMT inhibition at inducing mitochondrial ferrous iron overload and parthanatos. Furthermore, sensitivity of lung carcinoma cells to myristoylation inhibition correlated with their dependency on TIM17A. This study reveals the unexpected connection between protein myristoylation, the mitochondrial import machinery, and iron homeostasis. It also uncovers myristoylation inhibitors as novel inducers of parthanatos in cancer, and the novel axis NMT-TIM17A as a potential therapeutic target in highly aggressive lung carcinomas. SIGNIFICANCE: KRAS-mutant lung carcinomas with LKB1 and/or KEAP1 co-mutations have intrinsic therapeutic resistance. We show that these tumors are sensitive to NMT inhibitors, which slow tumor growth in vivo and sensitize cells to platinum-based chemotherapy in vitro. Inhibition of myristoylation causes death by parthanatos and thus has the potential to kill apoptosis and ferroptosis-resistant cancer cells. Our findings warrant investigation of NMT as a therapeutic target in highly aggressive lung carcinomas.
Assuntos
Aciltransferases , Sobrecarga de Ferro , Neoplasias Pulmonares , Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Camundongos , Sobrecarga de Ferro/metabolismo , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação , Estresse Oxidativo/efeitos dos fármacosRESUMO
Neurons express various combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here, we use epitope-tagged endogenous NR subunits, expansion light-sheet microscopy, and electron microscopy (EM) connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion-sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type-specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determine patterns of synaptic inputs. In support of this model, we identify a transmembrane protein selectively associated with a subset of spatially restricted synapses and demonstrate its requirement for synapse formation through genetic analysis. We propose that mechanisms that regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.
Assuntos
Conectoma , Sinapses/fisiologia , Neurônios Motores/metabolismo , Microscopia Eletrônica , Receptores de GABA-A/metabolismoRESUMO
Prevention of re-replication via negative regulation of replication initiator proteins, such as CDC6, is key to maintenance of genomic integrity, whereas their up-regulation is generally associated with perturbation in cell cycle, genomic instability, and potentially, tumorigenesis. The HBx oncoprotein of hepatitis B virus is well known to deregulate cell cycle and has been intricately linked to development of hepatocellular carcinoma. Despite a clear understanding of the proliferative effects of HBx on cell cycle, a mechanistic link between HBx-mediated hepatocarcinogenesis and host cell DNA replication remains poorly perused. Here we show that HBx overexpression in both the cellular as well as the transgenic environment resulted in the accumulation of CDC6 through transcriptional and post-translational up-regulation. The HBx-mediated increase in CDK2 activity altered the E2F1-Rb (retinoblastoma) balance, which favored CDC6 gene expression by E2F1. Besides, HBx impaired the APC(Cdh1)-dependent protein degradation pathway and conferred intracellular stability to CDC6 protein. Increase in CDC6 levels correlated with increase in CDC6 occupancy on the ß-globin origin of replication, suggesting increment in origin licensing and re-replication. In conclusion, our findings strongly suggest a novel role for CDC6 in abetting the oncogenic sabotage carried out by HBx and support the paradigm that pre-replicative complex proteins have a role in oncogenic transformation.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Transformação Celular Viral , Replicação do DNA , Vírus da Hepatite B/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Regulação para Cima , Proteínas de Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/genética , Humanos , Proteínas Nucleares/genética , Estabilidade Proteica , Origem de Replicação/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transativadores/genética , Proteínas Virais Reguladoras e AcessóriasRESUMO
Multicellular organisms have evolved elaborate strategies to sense and adapt to changes in intracellular oxygen. The canonical cellular pathway responsible for oxygen sensing consists of the von Hippel-Lindau (pVHL) tumor suppressor protein, prolyl hydroxylases (PHD), and hypoxia-inducible factors (HIFs), which together regulate expression of downstream genes involved in oxygen homeostasis. In recent years, it has become increasingly clear that oxygen regulatory mechanisms are intertwined with cellular iron-sensing pathways. Key members of these networks such as prolyl-hydroxylases, E3 ubiquitin ligase adaptor protein FBXL5, iron regulatory proteins (IRPs), and Fe-S cluster proteins require both iron and oxygen for their optimal function and/or are tightly regulated by intracellular concentrations of these molecules. Monitoring how protein interactomes are remodeled as a function of intracellular oxygen and iron levels gives insights into the nature and dynamics of these pathways. We have recently described an oxygen-sensitive interaction between FBXL5 and the cytoplasmic Fe-S cluster targeting complex (CIA targeting complex) with implications in the FBXL5-dependent regulation of IRPs. Based on this work, we present a protocol describing the induction and maintenance of hypoxia in mammalian cell cultures and a mass-spectrometry-based proteomics approach aimed at interrogating changes in interactome of key proteins as a function of intracellular oxygen and iron levels. These methods are widely applicable to understanding the dynamics of iron and oxygen signaling.
Assuntos
Ferro , Oxigênio , Animais , Ferro/metabolismo , Oxigênio/metabolismo , Proteômica , Hipóxia/metabolismo , Espectrometria de Massas , Mamíferos/metabolismoRESUMO
Neurons express different combinations of neurotransmitter receptor (NR) subunits and receive inputs from multiple neuron types expressing different neurotransmitters. Localizing NR subunits to specific synaptic inputs has been challenging. Here we use epitope tagged endogenous NR subunits, expansion light-sheet microscopy, and EM connectomics to molecularly characterize synapses in Drosophila. We show that in directionally selective motion sensitive neurons, different multiple NRs elaborated a highly stereotyped molecular topography with NR localized to specific domains receiving cell-type specific inputs. Developmental studies suggested that NRs or complexes of them with other membrane proteins determines patterns of synaptic inputs. In support of this model, we identify a transmembrane protein associated selectively with a subset of spatially restricted synapses and demonstrate through genetic analysis its requirement for synapse formation. We propose that mechanisms which regulate the precise spatial distribution of NRs provide a molecular cartography specifying the patterns of synaptic connections onto dendrites.
RESUMO
Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.
RESUMO
The high complexity prevalent in biological samples requires chromatographic separations with high sensitivity and resolution to be effectively analyzed. Here we introduce a robust, reproducible and inexpensive protocol for preparation of a nano-flow reversed phase high performance liquid chromatography (RP-HPLC) columns for on-line separation of analytical peptides before introduction into and detection by a mass-spectrometer in traditional bottom-up proteomics workflows. Depending on the goal of the experiment and the chemical properties of the analytes being separated, optimal column parameters may differ in their internal or outer diameters, length, particle size, pore size, chemistry of stationary phase particles, and the presence or absence of an integrated electrospray emitter at the tip. An in-house column packing system not only enables the rapid fabrication of columns with the desired properties but also dramatically reduces the cost of the process. The optimized protocol for packing a C18 AQ (aqueous) fused silica column discussed here is compatible with a wide range of liquid chromatographic instruments for achieving effective separation of analytes.
Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Peptídeos , Cromatografia Líquida , Espectrometria de Massas , Peptídeos/químicaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Sirtuin-7 (SIRT7) deacetylase exhibits a high selectivity for acetylated H3K18 and has been implicated in the maintenance of malignant phenotype. However, it remains unclear if SIRT7 and H3K18ac play a role in the tumorigenic program driven by oncogenic viruses. We show that ectopically expressed HBx oncoprotein of hepatitis B virus promoted intracellular stability of SIRT7 by salvaging it from ubiquitin-mediated proteasomal degradation. HBx-dependent accumulation of SIRT7 favored H3K18 deacetylation and down-regulated the small ribosomal protein gene, RPS7, involved in cell death and DNA damage response. HBx facilitated the recruitment of SIRT7 to RPS7 promoter thus impeding H3K18ac occupancy and hindering RPS7 transcription. The antagonistic relationship between SIRT7 and RPS7 was also observed in the HBx transgenic mice, where elevated levels of SIRT7 protein were coincident with low levels of H3K18ac and RPS7. Strikingly, inhibition of cellular deubiquitinase activity restored RPS7 gene transcription. Further, depletion of endogenous SIRT7 led to decreased cell viability and transformation. The biological relevance of RPS7 suppression by HBx-SIRT7 axis was evident from ectopic expression of RPS7 which attenuated clonogenicity of cells. Thus, our findings suggest that SIRT7 is a critical regulator of HBx-driven oncogenic program, through its antagonistic impact on growth restrictive ribosomal protein RPS7.
Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas Ribossômicas/genética , Sirtuínas/metabolismo , Transativadores/metabolismo , Aminopiridinas/farmacologia , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Estabilidade Proteica , Proteínas Ribossômicas/metabolismo , Sirtuínas/genética , Tiocianatos/farmacologia , Transativadores/genética , Regulação para Cima , Proteínas Virais Reguladoras e AcessóriasRESUMO
Hepatotropic viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major etiological agents associated with development of hepatocellular carcinoma (HCC). Progression of HCC is a multistep process that requires sequential or parallel deregulation of oncogenic and tumor suppressive pathways leading to chromosomal instability and neoplastic phenotype. In the recent years, microRNAs (miRNAs) have carved their own niche alongside oncogenes and tumor suppressors, owing to their innate ability to receive and relay multiple signals. Not surprisingly, miRNAs are fast emerging as central player in myriads of malignancies including HCC. miRNAs are reported to participate in initiation and progression of HCC, and have also been clinically correlated with risk assessment, disease grade, aggressiveness, and prognosis. Despite extensive data available on the role of miRNAs in HCC, there is a pressing need to integrate and evaluate these datasets to find its correlation, if any, with causal agents in order to devise novel interventional modalities. Through this review, we attempt to bridge the gap by consolidating the current knowledge and concepts in the field of HCC-related miRNAs with special emphasis on HBV and HCV. Further, we assess the potential of common as well as unique signatures that may be useful in developing novel biomarkers and therapeutics.