Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 193(2): 949-965, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37338502

RESUMO

Single-cell metabolomics is a powerful tool that can reveal cellular heterogeneity and can elucidate the mechanisms of biological phenomena in detail. It is a promising approach in studying plants, especially when cellular heterogeneity has an impact on different biological processes. In addition, metabolomics, which can be regarded as a detailed phenotypic analysis, is expected to answer previously unrequited questions which will lead to expansion of crop production, increased understanding of resistance to diseases, and in other applications as well. In this review, we will introduce the flow of sample acquisition and single-cell techniques to facilitate the adoption of single-cell metabolomics. Furthermore, the applications of single-cell metabolomics will be summarized and reviewed.


Assuntos
Metabolômica , Plantas , Metabolômica/métodos , Plantas/genética , Produção Agrícola
2.
Geroscience ; 46(4): 3831-3844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38418756

RESUMO

Vascular ageing is associated with increased arterial stiffness and cardiovascular mortality that might be linked to altered vascular energy metabolism. The aim of this study was to establish a Seahorse XFe96 Analyzer-based methodology for the reliable, functional assessment of mitochondrial respiration and glycolysis in single murine aortic rings and to validate this functional assay by characterising alterations in vascular energy metabolism in aged mice. Healthy young and old C57BL/6 mice were used for the analyses. An optimised setup consisting of the Seahorse XFe96 Analyzer and Seahorse Spheroid Microplates was applied for the mitochondrial stress test and the glycolysis stress test on the isolated murine aortic rings, supplemented with analysis of NAD content in the aorta. To confirm the age-dependent stiffness of the vasculature, pulse wave velocity was measured in vivo. In addition, the activity of vascular nitric oxide synthase and vascular wall morphology were analysed ex vivo. The vascular ageing phenotype in old mice was confirmed by increased aortic stiffness, vascular wall remodelling, and nitric oxide synthase activity impairment. The rings of the aorta taken from old mice showed changes in vascular energy metabolism, including impaired spare respiratory capacity, maximal respiration, glycolysis, and glycolytic capacity, as well as a fall in the NAD pool. In conclusion, optimised Seahorse XFe96-based analysis to study energy metabolism in single aortic rings of murine aorta revealed a robust impairment of functional vascular respiratory and glycolytic capacity in old mice linked to NAD deficiency that coincided with age-related aortic wall remodelling and stiffness.


Assuntos
Envelhecimento , Aorta , Glicólise , Camundongos Endogâmicos C57BL , Mitocôndrias , Rigidez Vascular , Animais , Glicólise/fisiologia , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Rigidez Vascular/fisiologia , Mitocôndrias/metabolismo , Aorta/metabolismo , Masculino , Camundongos , Metabolismo Energético/fisiologia , Análise de Onda de Pulso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA