Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glia ; 68(5): 1065-1080, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31833596

RESUMO

Tonic extrasynaptic GABAA receptor (GABAA R) activation is under the tight control of tonic GABA release from astrocytes to maintain the brain's excitation/inhibition (E/I) balance; any slight E/I balance disturbance can cause serious pathological conditions including epileptic seizures. However, the pathophysiological role of tonic GABA release from astrocytes has not been tested in epileptic seizures. Here, we report that pharmacological or genetic intervention of the GABA-permeable Bestrophin-1 (Best1) channel prevented the generation of tonic GABA inhibition, disinhibiting CA1 pyramidal neuronal firing and augmenting seizure susceptibility in kainic acid (KA)-induced epileptic mice. Astrocyte-specific Best1 over-expression in KA-injected Best1 knockout mice fully restored the generation of tonic GABA inhibition and effectively suppressed seizure susceptibility. We demonstrate for the first time that tonic GABA from reactive astrocytes strongly contributes to the compensatory shift of E/I balance in epileptic hippocampi, serving as a good therapeutic target against altered E/I balance in epileptic seizures.


Assuntos
Astrócitos/metabolismo , Bestrofinas/metabolismo , Hipocampo/metabolismo , Inibição Neural/fisiologia , Convulsões/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Bestrofinas/genética , Ácido Caínico , Camundongos , Camundongos Knockout , Receptores de GABA-A/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética
2.
Korean J Physiol Pharmacol ; 21(6): 695-702, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29200913

RESUMO

The sustained tonic currents (Itonic) generated by γ-aminobutyric acid A receptors (GABAARs) are implicated in diverse age-dependent brain functions. While various mechanisms regulating Itonic in the hippocampus are known, their combined role in Itonic regulation is not well understood in different age groups. In this study, we demonstrated that a developmental increase in GABA transporter (GAT) expression, combined with gradual decrease in GABAAR α5 subunit, resulted in various Itonic in the dentate gyrus granule cells (DGGCs) of preadolescent rats. Both GAT-1 and GAT-3 expression gradually increased at infantile (P6-8 and P13-15) and juvenile (P20-22 and P27-29) stages, with stabilization observed thereafter in adolescents (P34-36) and young adults (P41-43). Itonic facilitation of a selective GAT-1 blocker (NO-711) was significantly less at P6-8 than after P13-15. The facilitation of Itonic by SNAP-5114, a GAT-3 inhibitor, was negligible in the absence of exogenous GABA at all tested ages. In contrast, Itonic in the presence of a nonselective GAT blocker (nipecotic acid, NPA) gradually decreased with age during the preadolescent period, which was mimicked by Itonic changes in the presence of exogenous GABA. Itonic sensitivity to L-655,708, a GABAAR α5 subunit inverse agonist, gradually decreased during the preadolescent period in the presence of NPA or exogenous GABA. Finally, Western blot analysis showed that the expression of the GABAAR α5 subunit in the dentate gyrus gradually decreased with age. Collectively, our results suggested that the Itonic regulation of altered GATs is under the final tune of GABAAR α5 subunit activation in DGGCs at different ages.

3.
J Neurophysiol ; 114(2): 914-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063771

RESUMO

γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure.


Assuntos
Astrócitos/fisiologia , Insuficiência Cardíaca/fisiopatologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Masculino , Bulbo/efeitos dos fármacos , Bulbo/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
4.
J Neurophysiol ; 110(1): 95-102, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23576696

RESUMO

The Noda epileptic rat (NER), a Wistar colony mutant, spontaneously has tonic-clonic convulsions with paroxysmal discharges. In the present study, we measured phasic and tonic γ-aminobutyric acid A (GABAA) current (I tonic) in NER hippocampal dentate gyrus granule cells and compared the results with those of normal parent strain Wistar rats (WIS). I tonic, revealed by a bicuculline-induced outward shift in holding current, was significantly smaller in NER than in WIS (P < 0.01). The frequency of inhibitory postsynaptic currents (IPSCs) was also significantly lower in NER than in WIS (P < 0.05), without significant differences in the IPSC amplitude or decay time between WIS and NER. I tonic attenuation in NER was further confirmed in the presence of GABA transporter blockers, NO-711 and nipecotic acid, with no difference in neuronal GABA transporter expression between WIS and NER. I tonic responses to extrasynaptic GABAA receptor agonists (THIP and DS-2) were significantly reduced in NER compared with WIS (P < 0.05). Allopregnanolone caused less I tonic increase in NER than in WIS, while it prolonged the IPSC decay time to a similar rate in the two groups. Expression of the GABAA receptor δ-subunit was decreased in the dentate gyrus of NER relative to that of WIS. Taken together, our results showed that a combination of attenuated presynaptic GABA release and extrasynaptic GABAA receptor expression reduced I tonic amplitude and its sensitivity to neurosteroids, which likely diminishes the gating function of dentate gyrus granule cells and renders NER more susceptible to seizure propagation.


Assuntos
Giro Denteado/fisiopatologia , Epilepsia Tônico-Clônica/fisiopatologia , Inibição Neural/fisiologia , Receptores de GABA-A/fisiologia , Animais , Técnicas In Vitro , Masculino , Ratos , Ratos Mutantes , Ratos Wistar
5.
Am J Physiol Regul Integr Comp Physiol ; 300(6): R1578-87, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21451144

RESUMO

Interactions between neurosteroids and GABA receptors have attracted particular attention in the supraoptic nucleus (SON). Although GABA(A) receptors (GABA(A)R) mediate a sustained tonic inhibitory current (I(tonic)), as well as conventional phasic inhibitory postsynaptic currents (IPSCs, I(phasic)) in the SON, whether the steroid modulation on I(tonic) is present in SON magnocelluar neurosecretory cells (MNCs) is unknown. Here, we addressed this question and gained insights into the potential molecular configuration of GABA(A) receptors mediating I(tonic) and conferring its neurosteroids sensitivity in SON MNCs. 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) (1 µM), a relatively selective extrasynaptic GABA(A)R agonist, facilitated I(tonic) without affecting the main characteristics of IPSCs, while DS-2, a relatively selective modulator of GABA(A)R δ-subunits, caused minimal changes in I(tonic) of SON MNCs. l-655,708, a relatively selective GABA(A)R α(5)-subunit inverse agonist, blocked ∼35% of the total I(tonic) both under basal and elevated ambient GABA concentration (3 µM). Facilitation of I(tonic) by benzodiazepines further supported the role of GABA(A)R γ(2)-subunit in I(tonic) of SON MNCs. Quantitative RT-PCR analysis showed much lesser expression of GABA(A)R δ-subunit than the α(5) or γ(2)-subunit in the SON. Allopregnanolone and 3α,5α-tetrahydrodeoxycorticosterone increased both I(tonic) and I(phasic) in SON MNCs, respectively, although more than 90% of the current increase was mediated by I(tonic) during the neurosteroid facilitation. Finally, l-655,708 attenuated the neurosteroid facilitation of I(tonic) but not of I(phasic). Altogether, our results suggest that I(tonic), mediated mainly by benzodiazepine-sensitive GABA(A)Rs containing α(5)-, ß-, and γ(2)-, and to a lesser extent, δ-subunits, is a potential target of neurosteroid modulation in SON neurons.


Assuntos
Benzodiazepinas/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Núcleo Supraóptico/efeitos dos fármacos , Animais , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Imidazóis/farmacologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Modelos Animais , Neurônios/metabolismo , Pregnanolona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Núcleo Supraóptico/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Neurochem Int ; 97: 57-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27180051

RESUMO

Long-term stress during pregnancy causes neurologic deficits to offspring with altered gamma-aminobutyric acid (GABA) system in the brain. However, it is not clear how prenatal stress affects the maturing GABAergic interneurons and the resulting abnormalities in infantile seizures. Here, we showed that prenatal stress alters the maturation of GABA inhibitory system using a seizure model induced by prenatal stress. Prenatal stress with betamethasone or acute immobilization stress (AIS) on gestational day 15 increased the seizure susceptibility to N-methyl-d-aspartate-triggered spasms on postnatal day 15. The expression of GABA was lower in the prenatally stressed group, which compromise the decrease of glutamate decarboxylase 67-immunopositive cells. Prenatal stress markedly decreased the expression of K(+)/Cl(-) co-transporter (KCC2) in the cortex. GABA induced membrane depolarization demonstrated prenatal stress models had significant higher membrane depolarization compared to control. GABA increased KCC2 expression in cultured cortex-containing slices. Taken together, our results showed that prenatal stress with betamethasone or AIS altered the maturation of GABAergic progenitors and resulted in the lack of GABA input, which in turn, decreased KCC2 expression and lowered seizure threshold. We conclude that delayed GABA excitatory/inhibitory shift would render the cortical neuronal circuit more susceptible to excitatory input in prenatal stress induced seizure.


Assuntos
Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Convulsões/metabolismo , Estresse Psicológico/metabolismo , Simportadores/biossíntese , Animais , Animais Recém-Nascidos , Betametasona/toxicidade , Feminino , Expressão Gênica , Glucocorticoides/toxicidade , Imobilização/efeitos adversos , Imobilização/psicologia , Técnicas de Cultura de Órgãos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/psicologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Simportadores/genética , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA