Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Circulation ; 148(7): 589-606, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37203562

RESUMO

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Assuntos
Dissecção Aórtica , Músculo Liso Vascular , Animais , Humanos , Camundongos , Dissecção Aórtica/genética , Sistema de Sinalização das MAP Quinases , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação
2.
Acta Pharmacol Sin ; 45(9): 1848-1860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38719954

RESUMO

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.


Assuntos
Angiotensina II , Proteína Forkhead Box O3 , Hipertensão , Camundongos Knockout , Músculo Liso Vascular , Transdução de Sinais , Remodelação Vascular , Proteína Quinase 1 Deficiente de Lisina WNK , Animais , Músculo Liso Vascular/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Camundongos , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/genética , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Cultivadas
3.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570211

RESUMO

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Células Espumosas , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Pró-Proteína Convertase 9
4.
J Neurosci ; 37(4): 871-881, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123022

RESUMO

Clinical studies show that chronic pain is accompanied by memory deficits and reduction in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of the sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, but impairs LTP in the hippocampus. The opposite changes may contribute to neuropathic pain and memory deficits, respectively. However, the cellular and molecular mechanisms underlying the functional synaptic changes are unclear. Here, we show that the dendrite lengths and spine densities are reduced significantly in hippocampal CA1 pyramidal neurons, but increased in spinal neurokinin-1-positive neurons in mice after SNI, indicating that the excitatory synaptic connectivity is reduced in hippocampus but enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor necrosis factor-alpha (TNF-α) is upregulated in bilateral hippocampus and in ipsilateral spinal dorsal horn, whereas brain-derived neurotrophic factor (BDNF) is decreased in the hippocampus but increased in the ipsilateral spinal dorsal horn after SNI. Importantly, the SNI-induced opposite changes in synaptic connectivity and BDNF expression are prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-α in cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the region-dependent synaptic changes, neuropathic pain, and memory deficits induced by SNI. The data suggest that neuropathic pain involves different structural synaptic alterations in spinal and hippocampal neurons that are mediated by overproduction of TNF-α and microglial activation and may underlie chronic pain and memory deficits. SIGNIFICANCE STATEMENT: Chronic pain is often accompanied by memory deficits. Previous studies have shown that peripheral nerve injury produces both neuropathic pain and memory deficits and induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn (SDH) but inhibits LTP in hippocampus. The opposite changes in synaptic plasticity may contribute to chronic pain and memory deficits, respectively. However, the structural and molecular bases of these alterations of synaptic plasticity are unclear. Here, we show that the complexity of excitatory synaptic connectivity and brain-derived neurotrophic factor (BDNF) expression are enhanced in SDH but reduced in the hippocampus in neuropathic pain and the opposite changes depend on tumor necrosis factor-alpha/tumor necrosis factor receptor 1 signaling and microglial activation. The region-dependent synaptic alterations may underlie chronic neuropathic pain and memory deficits induced by peripheral nerve injury.


Assuntos
Hipocampo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Neuralgia/metabolismo , Neuralgia/patologia , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/farmacologia
5.
Mol Pain ; 14: 1744806918797243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30180777

RESUMO

Bulleyaconitine A, a diterpenoid alkaloid isolated from Aconitum bulleyanum plants, has been used for the treatment of chronic pain in China since 1985. Clinical studies show that the oral administration of bulleyaconitine A is effective for treating different kinds of chronic pain, including back pain, joint pain, and neuropathic pain with minimal side effect in human patients. The experimental studies have revealed that bulleyaconitine A at therapeutic doses potently inhibits the peripheral sensitization and central sensitization that underlie chronic pain and has no effect on acute pain. Bulleyaconitine A preferably blocks tetrodotoxin-sensitive voltage-gated sodium channels in dorsal root ganglion neurons by inhibition of protein kinase C, and the effect is around 600 times more potent in neuropathic animals than in naïve ones. Bulleyaconitine A at 5 nM inhibits the hypersensitivity of dorsal root ganglion neurons in neuropathic rats but has no effect on excitability of dorsal root ganglion neurons in sham group. Bulleyaconitine A inhibits long-term potentiation at C-fiber synapses in spinal dorsal horn, a synaptic model of pathological pain, preferably in neuropathic pain rats over naïve rats. The following mechanisms may underlie the selective effect of bulleyaconitine A on chronic pain. (1) In neuropathic conditions, protein kinase C and voltage-gated sodium channels in dorsal root ganglion neurons are upregulated, which enhances bulleyaconitine A's effect. (2) Bulleyaconitine A use-dependently blocks voltage-gated sodium channels and therefore inhibits the ectopic discharges that are important for neuropathic pain. (3) Bulleyaconitine A is shown to inhibit neuropathic pain by the modulation of spinal microglia, which are involved in the chronic pain but not in acute (nociceptive) pain. Moreover, bulleyaconitine A facilitates the anesthetic effect of morphine and inhibits morphine tolerance in rats. Together, bulleyaconitine A is able to inhibit chronic pain by targeting at multiple molecules. Further clinical and experimental studies are needed for evaluating the efficacy of bulleyaconitine A in different forms of chronic pain in patients and for exploring the underlying mechanisms.


Assuntos
Aconitina/análogos & derivados , Adjuvantes Imunológicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Aconitina/química , Aconitina/uso terapêutico , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Humanos , Neurônios/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
6.
Mol Pain ; 14: 1744806918778491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29783906

RESUMO

Background Oral administration of Bulleyaconitine A, an extracted diterpenoid alkaloid from Aconitum bulleyanum plants, is effective for treating chronic pain in rats and in human patients, but the underlying mechanisms are poorly understood. Results As the hyperexcitability of dorsal root ganglion neurons resulting from the upregulation of voltage-gated sodium (Nav) channels has been proved critical for development of chronic pain, we tested the effects of Bulleyaconitine A on Nav channels in rat spared nerve injury model of neuropathic pain. We found that Bulleyaconitine A at 5 nM increased the threshold of action potentials and reduced the firing rate of dorsal root ganglion neurons in spared nerve injury rats but not in sham rats. Bulleyaconitine A preferably blocked tetrodotoxin-sensitive Nav channels over tetrodotoxin-resistant ones in dorsal root ganglion neurons of spared nerve injury rats. Bulleyaconitine A was more potent for blocking Nav1.3 and Nav1.7 than Nav1.8 in cell lines. The half maximal inhibitory concentration (IC50) values for resting Nav1.3, Nav1.7, and Nav1.8 were 995.6 ± 139.1 nM, 125.7 ± 18.6 nM, and 151.2 ± 15.4 µM, respectively, which were much higher than those for inactivated Nav1.3 (20.3 ± 3.4 pM), Nav1.7 (132.9 ± 25.5 pM), and Nav1.8 (18.0 ± 2.5 µM). The most profound use-dependent blocking effect of Bulleyaconitine A was observed on Nav1.7, less on Nav1.3, and least on Nav1.8 at IC50 concentrations. Bulleyaconitine A facilitated the inactivation of Nav channels in each subtype. Conclusions Preferably blocking tetrodotoxin-sensitive Nav1.7 and Nav1.3 in dorsal root ganglion neurons may contribute to Bulleyaconitine A's antineuropathic pain effect.


Assuntos
Aconitina/análogos & derivados , Gânglios Espinais/patologia , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Tecido Nervoso/lesões , Neurônios/metabolismo , Aconitina/farmacologia , Animais , Linhagem Celular , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Sprague-Dawley
7.
Brain Behav Immun ; 71: 52-65, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29709527

RESUMO

N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 µM or ZC88, 10-1000 µM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 µM) and ZC88 (10 µM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1ß) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1ß induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1ß and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1ß over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Gânglios Espinais/fisiopatologia , Animais , Canais de Cálcio Tipo N/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios Aferentes/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/fisiopatologia , Transmissão Sináptica/fisiologia , Ativação Transcricional , Regulação para Cima
8.
J Cell Mol Med ; 21(5): 904-915, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27878958

RESUMO

Increasing evidence supports that activation of store-operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5-FU induces hepatocarcinoma cell death through regulating Ca2+ -dependent autophagy. [Ca2+ ]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5-fluorouracil (5-FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5-FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5-FU-induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5-FU-activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5-FU-induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5-FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5-FU sensitivity for hepatocarcinoma treatment and blockade of Orai1-mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5-FU treatment.


Assuntos
Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Fluoruracila/farmacologia , Neoplasias Hepáticas/metabolismo , Proteína ORAI1/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
9.
Circ J ; 80(4): 1024-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26911455

RESUMO

BACKGROUND: Previous work has demonstrated that the volume-regulated chloride channel is activated during foam cell formation, and inhibition of chloride movement prevents intracellular lipid accumulation. However, the mechanism explaining how chloride movement promotes foam cell formation is not clear. METHODS AND RESULTS: Foam cell formation was determined by Oil Red O staining. Western blotting and co-immunoprecipitation were used to examine protein expression and protein-protein interaction. [Cl(-)]iwas measured using 6-methoxy-N-ethylquinolinium iodide dye. The results showed that [Cl(-)]iwas decreased in monocytes/macrophages from patients with hypercholesterolemia and from apoE(-/-)mice fed with a high-fat diet. Lowering [Cl(-)]iupregulated scavenger receptor A (SR-A) expression, increased the binding and uptake of oxLDL, enhanced pro-inflammatory cytokine production and subsequently accelerated foam cell formation in macrophages from humans and mice. In addition, low Cl(-)solution stimulated the activation of JNK and p38 mitogen-activated protein kinases. Inhibition of JNK and p38 blocked Cl(-)reduced medium-induced SR-A expression and lipid accumulation. In contrast, reduction of [Cl(-)]ipromoted the interaction of SR-A with caveolin-1, thus facilitating caveolin-1-dependent SR-A endocytosis. Moreover, disruption of caveolae attenuated SR-A internalization, JNK and p38 activation, and ultimately prevented SR-A expression and foam cell formation stimulated by low Cl(-)medium. CONCLUSIONS: This data provide strong evidence that reduction of [Cl(-)]iis a critical contributor to intracellular lipid accumulation, suggesting that modulation of [Cl(-)]iis a novel avenue to prevent foam cell formation and atherosclerosis.


Assuntos
Cloretos/metabolismo , Células Espumosas/metabolismo , Hipercolesterolemia/metabolismo , Animais , Apolipoproteínas E/deficiência , Caveolina 1/genética , Caveolina 1/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Células Espumosas/patologia , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Adv Exp Med Biol ; 904: 59-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26900063

RESUMO

Peripheral nerve injury often induces chronic neuropathic pain. Peripheral nerve is consisted of sensory fibers and motor fibers, it is questioned injury to which type of fibers is responsible for generation of neuropathic pain? Because neuropathic pain is sensory disorder, it is generally believed that the disease should be induced by injury to sensory fibers. In recent years, however, emergent evidence shows that motor fiber injury but not sensory fiber injury is necessary and sufficient for induction of neuropathic pain. Motor fiber injury leads to neuropathic pain by upregulating pro-inflammatory cytokines and brain-derived neurotrophic factor in pain pathway.


Assuntos
Neurônios Motores/fisiologia , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/complicações , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Sensibilização do Sistema Nervoso Central/fisiologia , Citocinas/biossíntese , Citocinas/fisiologia , Hipocampo/fisiopatologia , Humanos , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Potenciação de Longa Duração , Microglia/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neuralgia/etiologia , Nociceptividade/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Canais de Sódio/fisiologia , Medula Espinal/fisiopatologia , Regulação para Cima
11.
Brain Behav Immun ; 44: 37-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25150005

RESUMO

Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. We found that the protein level of calpain-2 in DRGs, but not calpain-1 was increased transiently in the first 10 min(-1)h ipsilaterally and 20 min(-1)h contralaterally after L5-VRT, long before mechanical allodynia was initiated (5-15 h ipsilaterally and 15 h(-1)d contralaterally). The early activation of calpain evaluated by the generation of spectrin breakdown products (SBDP) correlated well with IL-6 up-regulation in bilateral DRGs. Double immunofluorescence staining revealed that almost all the calpain-2 positive neurons expressed IL-6, indicating an association between calpain-2 and IL-6. Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.


Assuntos
Calpaína/metabolismo , Gânglios Espinais/enzimologia , Interleucina-6/metabolismo , Neuralgia/enzimologia , Neurônios/enzimologia , Animais , Calpaína/farmacologia , Hiperalgesia/enzimologia , Hiperalgesia/etiologia , Masculino , Neuralgia/etiologia , Ratos , Ratos Sprague-Dawley , Espectrina/metabolismo , Raízes Nervosas Espinhais/lesões , Regulação para Cima
12.
Gynecol Obstet Invest ; 79(3): 189-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25722014

RESUMO

OBJECTIVE: To investigate whether and how human chorionic gonadotropin (HCG) treatment ameliorates endometriosis in an endometriotic rat model. METHODS: Twenty-four endometriosis rats were established and were randomly divided into four groups, and then the rats were treated with 19.4, 25.8, and 51.6 IU/100 g weight/day of HCG, respectively. The control group was treated with 0.9% NaCl. After 15 days (3 estrous cycles), the ectopic lesion volume and the expression of leptin protein in eutopic and ectopic endometrium were investigated. RESULTS: After HCG treatment, the volumes of endometriotic lesions were significantly smaller than those before treatment. During endometriosis development, the expression of leptin protein in eutopic and ectopic endometrium was remarkably increased. HCG administration reversed leptin upregulation in endometriotic tissues. CONCLUSION: HCG therapy appears to be an effective treatment for endometriosis in rats through down-regulation of leptin expression in eutopic and ectopic endometrium.


Assuntos
Gonadotropina Coriônica/farmacologia , Endometriose/tratamento farmacológico , Endométrio/patologia , Leptina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Regulação para Baixo , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Feminino , Imunofluorescência , Humanos , Ratos , Ratos Sprague-Dawley
13.
Gut ; 63(10): 1587-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24440986

RESUMO

BACKGROUND: ClC-3 channel/antiporter plays a critical role in a variety of cellular activities. ClC-3 has been detected in the ileum and colon. OBJECTIVE: To determine the functions of ClC-3 in the gastrointestinal tract. DESIGN: After administration of dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), intestines from ClC-3-/- and wild-type mice were examined by histological, cellular, molecular and biochemical approaches. ClC-3 expression was determined by western blot and immunostaining. RESULTS: ClC-3 expression was reduced in intestinal tissues from patients with UC or Crohn's disease and from mice treated with DSS. Genetic deletion of ClC-3 increased the susceptibility of mice to DSS- or TNBS-induced experimental colitis and prevented intestinal recovery. ClC-3 deficiency promoted DSS-induced apoptosis of intestinal epithelial cells through the mitochondria pathway. ClC-3 interacts with voltage-dependent anion channel 1, a key player in regulation of mitochondria cytochrome c release, but DSS treatment decreased this interaction. In addition, lack of ClC-3 reduced the numbers of Paneth cells and impaired the expression of antimicrobial peptides. These alterations led to dysfunction of the epithelial barrier and invasion of commensal bacteria into the mucosa. CONCLUSIONS: A defect in ClC-3 may contribute to the pathogenesis of IBD by promoting intestinal epithelial cell apoptosis and Paneth cell loss, suggesting that modulation of ClC-3 expression might be a new strategy for the treatment of IBD.


Assuntos
Antiporters/metabolismo , Canais de Cloreto/fisiologia , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Trato Gastrointestinal/metabolismo , Celulas de Paneth/patologia , Animais , Antiporters/efeitos dos fármacos , Apoptose , Western Blotting , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Trinitrobenzenossulfônico/toxicidade
14.
J Neurosci ; 33(4): 1540-51, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345228

RESUMO

At present, effective drug for treatment of neuropathic pain is still lacking. Recent studies have shown that the ligands of translocator protein (TSPO, 18 kDa), a peripheral receptor for benzodiazepine, modulate inflammatory pain. Here, we report that TSPO was upregulated in astrocytes and microglia in the ipsilateral spinal dorsal horn of rats following L5 spinal nerve ligation (L5 SNL), lasting until the vanishing of the behavioral signs of neuropathic pain (∼50 d). Importantly, a single intrathecal injection of specific TSPO agonists Ro5-4864 or FGIN-1-27 at 7 and 21 d after L5 SNL depressed the established mechanical allodynia and thermal hyperalgesia dramatically, and the effect was abolished by pretreatment with AMG, a neurosteroid synthesis inhibitor. Mechanically, Ro5-4864 substantially inhibited spinal astrocytes but not microglia, and reduced the production of tumor necrosis factor-α (TNF-α) in vivo and in vitro. The anti-neuroinflammatory effect was also prevented by AMG. Interestingly, TSPO expression returned to control levels or decreased substantially, when neuropathic pain healed naturally or was reversed by Ro5-4864, suggesting that the role of TSPO upregulation might be to promote recovery from the neurological disorder. Finally, the neuropathic pain and the upregulation of TSPO by L5 SNL were prevented by pharmacological blockage of Toll-like receptor 4 (TLR4). These data suggested that TSPO might be a novel therapeutic target for the treatment of neuropathic pain.


Assuntos
Proteínas de Transporte/biossíntese , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores de GABA-A/biossíntese , Animais , Astrócitos/metabolismo , Western Blotting , Células Cultivadas , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Masculino , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/lesões , Nervos Espinhais/metabolismo , Regulação para Cima
15.
Brain Behav Immun ; 38: 185-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24530998

RESUMO

Bortezomib (BTZ) is a frequently used chemotherapeutic drug for the treatment of refractory multiple myeloma and hematological neoplasms. The mechanism by which the administration of BTZ leads to painful peripheral neuropathy remains unclear. In the present study, we first determined that the administration of BTZ upregulated the expression of TNF-α and phosphorylated JNK1/2 in the dorsal root ganglion (DRG) of rat. Furthermore, the TNF-α synthesis inhibitor thalidomide significantly blocked the activation of both isoforms JNK1 and JNK2 in the DRG and attenuated mechanical allodynia following BTZ treatment. Knockout of the expression of TNF-α receptor TNFR1 (TNFR1 KO mice) or TNFR2 (TNFR2 KO mice) inhibited JNK1 and JNK2 activation and decreased mechanical allodynia induced by BTZ. These results suggest that upregulated TNF-α expression may activate JNK signaling via TNFR1 or TNFR2 to mediate mechanical allodynia following BTZ treatment.


Assuntos
Antineoplásicos/toxicidade , Ácidos Borônicos/toxicidade , Gânglios Espinais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Pirazinas/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Animais , Bortezomib , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37702564

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Calcineurina/metabolismo , Antígenos CD36/metabolismo , Ciclosporina/efeitos adversos , Ciclosporina/metabolismo , Lipídeos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/metabolismo
17.
Brain Behav Immun ; 25(2): 322-34, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20933591

RESUMO

It has been shown that following peripheral nerve injury brain-derived neurotrophic factor (BDNF) released by activated microglia contributes to neuropathic pain, but whether BDNF affects the function of microglia is still unknown. In the present work we found that spinal application of BDNF, which induced long-term potentiation (LTP) of C-fiber evoked field potentials, activated spinal microglia in naïve animals, while pretreatment with microglia inhibitor minocycline blocked BDNF-induced LTP. In addition, following LTP induction by BDNF, both phosphorylated Src-family kinases (p-SFKs) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were up-regulated only in spinal microglia but not in neurons and astrocytes, whilst spinal application of SFKs inhibitor (PP2 or SU6656) or p38 MAPK inhibitor (SB203580) blocked BDNF-induced LTP and suppressed microglial activation. As spinal LTP at C-fiber synapses is considered to underlie neuropathic pain, we subsequently examined whether BDNF may contribute to mechanical hypersensitivity by activation of spinal microglia using spared nerve injury (SNI) model. Following SNI BDNF and TrkB receptor were up-regulated mainly in dorsal horn neurons and in activated microglia, and p-SFKs and p-p38 MAPK were increased exclusively in microglia. Intrathecal injection of BDNF scavenger TrkB-Fc starting before SNI, which prevented the behavioral sign of neuropathic pain, suppressed both microglial activation and the up-regulation of p-SFKs and p-p38 MAPK produced by SNI. Thus, the increased BDNF/TrkB signaling in spinal dorsal horn may contribute to neuropathic pain by activation of microglia following peripheral nerve injury and inhibition of SFKs or p38 MAPK may selectively inhibit microglia in spinal dorsal horn.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Microglia/fisiologia , Medula Espinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fenômenos Eletrofisiológicos , Imuno-Histoquímica , Injeções Espinhais , Masculino , Minociclina/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Neuralgia/enzimologia , Neuralgia/patologia , Neuralgia/psicologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/biossíntese
18.
Chin J Physiol ; 54(4): 241-6, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22129822

RESUMO

Activation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal protein kinase (JNK) in the dorsal root ganglia (DRG) is critical for the development of neuropathic pain. Tetraodontoxin-sensitive Nav1.3 channel, expressed at a very low level in the adult nervous system, is up-regulated in DRG neurons after peripheral nerve injury or peri-sciatic administration of rat recombinant tumour necrosis factor-alpha (rrTNF-α). To test if activation of p38 MAPK and JNK is required for the re-expression of Nav1.3 channel in cultured adult rat DRG neurons, we administrated rrTNF to cultured adult rat DRG neurons to induce Nav1.3 re-expression, and pre-treated with p38 MAPK inhibitor (SB203580 at 2.65, 26.5 and 265 µM) or JNK inhibitor (SP600125 at 1, 10 and 100 µM) 2 h before rrTNF to observe changes of Nav1.3-immunoreactivity. Compared with the DMSO vehicle pre-treatment group, SB203580 at 2.65 µM partially blocked the re-expression of Nav1.3 (P<0.001), and at 26.5 and 265 µM completely blocked Nav1.3 (P<0.001). Similarly, SP600125 at the concentration of 1 µM blocked the re-expression of Nav1.3 partially (P<0.001), and at 10 and 100 µM blocked Nav1.3 completely (P<0.001). These data show that the activation of both p38 MAPK and JNK in DRG neurons was involved in the re-expression of Nav1.3 channel triggered by TNF-α, which might contribute to neuropathic pain.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
19.
Front Cell Dev Biol ; 9: 682574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409030

RESUMO

The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex ß (IKKß) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.

20.
Adv Sci (Weinh) ; 7(10): 1903657, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440483

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA