Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Virol ; 97(2): e0194322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36722971

RESUMO

Virus replication depends on a complex interplay between viral and host proteins. In the case of African swine fever virus (ASFV), a large DNA virus, only a few virus-host protein-protein interactions have been identified to date. In this study, we demonstrate that the ASFV protein CP204L interacts with the cellular homotypic fusion and protein sorting (HOPS) protein VPS39, blocking its association with the lysosomal HOPS complex, which modulates endolysosomal trafficking and promotes lysosome clustering. Instead, CP204L and VPS39 are targeted to virus factories and localized at the periphery of the virus DNA replication sites. Furthermore, we show that loss of VPS39 reduces the levels of virus proteins synthesized in the early phase of infection and delays ASFV replication but does not completely inhibit it. Collectively, these results identify a novel virus-host protein interaction that modulates host membrane rearrangement during infection and provide evidence that CP204L is a multifunctional protein engaged in distinct steps of the ASFV life cycle. IMPORTANCE African swine fever virus (ASFV) was first identified over a hundred years ago. Since then, much effort has been made to understand the pathogenesis of ASFV. However, the specific roles of many individual ASFV proteins during the infection remain enigmatic. This study provides evidence that CP204L, one of the most abundant ASFV proteins, modulates endosomal trafficking during virus infection. Through protein-protein interaction, CP204L prevents the recruitment of VPS39 to the endosomal and lysosomal membranes, resulting in their accumulation. Consequently, CP204L and VPS39 become sequestered in the ASFV replication and assembly site, known as the virus factory. These results uncover a novel function of viral protein CP204L and extend our understanding of complex interaction between virus and host.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Proteínas Virais , Replicação Viral , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Lisossomos/metabolismo , Transporte Proteico , Suínos , Vacúolos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
J Gen Virol ; 100(9): 1303-1314, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31361215

RESUMO

African swine fever (ASF) is a lethal disease of domestic pigs and wild boar, against which no vaccines are available to date. The large dsDNA genome of African swine fever virus (ASFV) contains up to 167 ORFs predicted to encode proteins. The functions and antigenic properties of many of these proteins are still unknown, which impedes vaccine development. Based on the results of mass spectrometry-based proteome analyses of ASFV-infected cells, two highly abundant but previously uncharacterized viral proteins, p285L and pK145R, were investigated in detail. To this end, monospecific rabbit antisera and corresponding gene deletion mutants of ASFV were prepared. RNA and immunoblot analyses revealed that p285L is an early gene product expressed prior to viral DNA replication, whereas pK145R is a true late protein. The predicted membrane protein p285L could be localized in purified ASFV particles. In contrast, pK145R was not detectable in virions, but accumulated diffusely in the cytoplasm of infected cells. Deletion of 285L or K145R from the genome of a virulent ASFV strain from Armenia did not significantly affect spread and productive growth in a permissive wild boar lung cell line, nor in primary macrophage cultures. Future studies must elucidate, whether p285L and pK145R, although non-essential for in vitro propagation of ASFV, are relevant for replication or virulence in swine. Furthermore, it remains to be investigated whether deletion of the abundant ASFV proteins p285L or pK145R might support serological differentiation from wild-type-infected animals.


Assuntos
Vírus da Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Vírus da Febre Suína Africana/genética , Animais , Linhagem Celular , Deleção de Genes , Regulação Viral da Expressão Gênica/fisiologia , Pulmão/citologia , RNA Viral , Sus scrofa , Proteínas Virais/química , Proteínas Virais/genética
3.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669828

RESUMO

Alphaherpesvirus envelope glycoprotein N (gN) and gM form a covalently linked complex. Bovine herpesvirus type 1 (BHV-1) UL49.5 (a gN homolog) contains two predicted cysteine residues, C42 and C78. The C42 is highly conserved among the alphaherpesvirus gN homologs (e.g., herpes simplex virus 1 and pseudorabies virus). To identify which cysteine residue is required for the formation of the UL49.5/gM complex and to characterize the functional significance of the UL49.5/gM complex, we constructed and analyzed C42S and C78S substitution mutants in either a BHV-1 wild type (wt) or BHV-1 UL49.5 cytoplasmic tail-null (CT-null) virus background. The results demonstrated that BHV-1 UL49.5 residue C42 but not C78 was essential for the formation of the covalently linked functional UL49.5/gM complex, gM maturation in the Golgi compartment, and efficient cell-to-cell spread of the virus. Interestingly, the C42S and CT-null mutations separately did not affect mutant UL49.5 virion incorporation. However, when both of the mutations were introduced simultaneously, the UL49.5 C42S/CT-null protein virion incorporation was severely reduced. Incidentally, the anti-VP22 antibody coimmunoprecipitated the UL49.5 C42S/CT-null mutant protein at a noticeably reduced level compared to that of the individual UL49.5 C42S and CT-null mutant proteins. As expected, in a dual UL49.5 C42S/VP22Δ virus with deletion of VP22 (VP22Δ), the UL49.5 C42S virion incorporation was also severely reduced while in a gMΔ virus, UL49.5 virion incorporation was affected only slightly. Together, these results suggested that UL49.5 virion incorporation is mediated redundantly, by both UL49.5/gM functional complex and VP22, through a putative gM-independent novel UL49.5 and VP22 interaction.IMPORTANCE Bovine herpesvirus 1 (BHV-1) envelope protein UL49.5 is an important virulence determinant because it downregulates major histocompatibility complex class I (MHC-I). UL49.5 also forms a covalently linked complex with gM. The results of this study demonstrate that UL49.5 regulates gM maturation and virus cell-to-cell spread since gM maturation in the Golgi compartment depends on covalently linked UL49.5/gM complex. The results also show that the UL49.5 residue cysteine 42 (C42) mediates the formation of the covalently linked UL49.5-gM interaction. Furthermore, a C42S mutant virus in which UL49.5 cannot interact with gM has defective cell-to-cell spread. Interestingly, UL49.5 also interacts with the tegument protein VP22 via its cytoplasmic tail (CT). The putative UL49.5 CT-VP22 interaction is essential for a gM-independent UL49.5 virion incorporation and is revealed when UL49.5 and gM are not linked. Therefore, UL49.5 virion incorporation is mediated by UL49.5-gM complex interaction and through a gM-independent interaction between UL49.5 and VP22.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Vírion/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Chlorocebus aethiops , Infecções por Herpesviridae/metabolismo , Homologia de Sequência , Células Vero , Replicação Viral
4.
Sci Rep ; 13(1): 10342, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604847

RESUMO

African swine fever virus (ASFV) is a lethal animal pathogen that enters its host cells through endocytosis. So far, host factors specifically required for ASFV replication have been barely identified. In this study a genome-wide CRISPR/Cas9 knockout screen in porcine cells indicated that the genes RFXANK, RFXAP, SLA-DMA, SLA-DMB, and CIITA are important for productive ASFV infection. The proteins encoded by these genes belong to the major histocompatibility complex II (MHC II), or swine leucocyte antigen complex II (SLA II). RFXAP and CIITA are MHC II-specific transcription factors, whereas SLA-DMA/B are subunits of the non-classical MHC II molecule SLA-DM. Targeted knockout of either of these genes led to severe replication defects of different ASFV isolates, reflected by substantially reduced plating efficiency, cell-to-cell spread, progeny virus titers and viral DNA replication. Transgene-based reconstitution of SLA-DMA/B fully restored the replication capacity demonstrating that SLA-DM, which resides in late endosomes, plays a crucial role during early steps of ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Traumatismos Craniocerebrais , Animais , Suínos , Vírus da Febre Suína Africana/genética , Replicação do DNA , DNA Viral , Replicação Viral/genética , Antígenos de Histocompatibilidade Classe II/genética , Proteínas de Membrana , Complexo Principal de Histocompatibilidade , Febre Suína Africana/genética
5.
Vaccines (Basel) ; 10(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35214763

RESUMO

Porcine circovirus type 2 (PCV2) is endemic worldwide. PCV2 causes immunosuppressive infection. Co-infection of pigs with other swine viruses, such as pseudorabies virus (PRV) and classical swine fever virus (CSFV), have fatal outcomes, causing the swine industry significant economic losses in many if not all pig-producing countries. Currently available inactivated/modified-live/vectored vaccines against PCV2/CSFV/PRV have safety and efficacy limitations. To address these shortcomings, we have constructed a triple gene (thymidine kinase, glycoprotein E [gE], and gG)-deleted (PRVtmv) vaccine vector expressing chimeric PCV2b-capsid, CSFV-E2, and chimeric Erns-fused with bovine granulocytic monocyte-colony stimulating factor (Erns-GM-CSF), designated as PRVtmv+, a trivalent vaccine. Here we compared this vaccine's immunogenicity and protective efficacy in pigs against wild-type PCV2b challenge with that of the inactivated Zoetis Fostera Gold PCV commercial vaccine. The live PRVtmv+ prototype trivalent subunit vaccine is safe and highly attenuated in pigs. Based on PCV2b-specific neutralizing antibody titers, viremia, viral load in lymphoid tissues, fecal-virus shedding, and leukocyte/lymphocyte count, the PRVtmv+ yielded better protection for vaccinated pigs than the commercial vaccine after the PCV2b challenge. Additionally, the PRVtmv+ vaccinated pigs generated low to moderate levels of CSFV-specific neutralizing antibodies.

6.
Front Immunol ; 13: 832264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558083

RESUMO

African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV "Estonia 2014" was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain "Armenia 2008". Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.


Assuntos
Febre Suína Africana , Vacinas Virais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana , Animais , Raios gama , Imunogenicidade da Vacina , Suínos , Vacinação , Vacinas Atenuadas/imunologia , Proteínas Virais , Vacinas Virais/imunologia
7.
Vaccines (Basel) ; 9(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451136

RESUMO

The bovine respiratory disease complex (BRDC) remains a major problem for both beef and dairy cattle industries worldwide. BRDC frequently involves an initial viral respiratory infection resulting in immunosuppression, which creates a favorable condition for fatal secondary bacterial infection. Current polyvalent modified live vaccines against bovine herpesvirus type 1(BoHV-1) and bovine viral diarrhea virus (BVDV) have limitations concerning their safety and efficacy. To address these shortcomings and safety issues, we have constructed a quadruple gene mutated BoHV-1 vaccine vector (BoHV-1 QMV), which expresses BVDV type 2, chimeric E2 and Flag-tagged Erns-fused with bovine granulocyte monocyte colony-stimulating factor (GM-CSF) designated here as QMV-BVD2*. Here we compared the safety, immunogenicity, and protective efficacy of QMV-BVD2* vaccination in calves against BVDV-2 with Zoetis Bovi-shield Gold 3 trivalent (BoHV-1, BVDV types 1 and 2) vaccine. The QMV-BVD2* prototype subunit vaccine induced the BoHV-1 and BVDV-2 neutralizing antibody responses along with BVDV-1 and -2 cross-reactive cellular immune responses. Moreover, after a virulent BVDV-2 challenge, the QMV-BVD2* prototype subunit vaccine conferred a more rapid recall BVDV-2-specific neutralizing antibody response and considerably better recall BVDV types 1 and 2-cross protective cellular immune responses than that of the Zoetis Bovi-shield Gold 3.

8.
Viruses ; 13(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34452438

RESUMO

Herpesviruses are large DNA viruses, which encode up to 300 different proteins including enzymes enabling efficient replication. Nevertheless, they depend on a multitude of host cell proteins for successful propagation. To uncover cellular host factors important for replication of pseudorabies virus (PrV), an alphaherpesvirus of swine, we performed an unbiased genome-wide CRISPR/Cas9 forward screen. To this end, a porcine CRISPR-knockout sgRNA library (SsCRISPRko.v1) targeting 20,598 genes was generated and used to transduce porcine kidney cells. Cells were then infected with either wildtype PrV (PrV-Ka) or a PrV mutant (PrV-gD-Pass) lacking the receptor-binding protein gD, which regained infectivity after serial passaging in cell culture. While no cells survived infection with PrV-Ka, resistant cell colonies were observed after infection with PrV-gD-Pass. In these cells, sphingomyelin synthase 1 (SMS1) was identified as the top hit candidate. Infection efficiency was reduced by up to 90% for PrV-gD-Pass in rabbit RK13-sgms1KO cells compared to wildtype cells accompanied by lower viral progeny titers. Exogenous expression of SMS1 partly reverted the entry defect of PrV-gD-Pass. In contrast, infectivity of PrV-Ka was reduced by 50% on the knockout cells, which could not be restored by exogenous expression of SMS1. These data suggest that SMS1 plays a pivotal role for PrV infection, when the gD-mediated entry pathway is blocked.


Assuntos
Sistemas CRISPR-Cas/genética , Genoma Viral , Herpesvirus Suídeo 1/genética , Interações entre Hospedeiro e Microrganismos , Mutação , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Animais , Linhagem Celular , Edição de Genes , Rim/citologia , Rim/virologia , Suínos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Replicação Viral
9.
Viruses ; 12(9)2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937797

RESUMO

Bovine herpesvirus 1 (BHV-1) causes respiratory infection and abortion in cattle. Following a primary infection, BHV-1 establishes lifelong latency in the trigeminal ganglia (TG). Periodic reactivation of the latent virus in TG neurons results in anterograde virus transport to nerve endings in the nasal mucosa and nasal virus shedding. The BHV-1 glycoprotein E cytoplasmic tail (gE-CT) is necessary for virus cell-to-cell spread in epithelial cells and neuronal anterograde transport. Recently, we identified two tyrosine residues, Y467 and Y563, within the tyrosine-based motifs 467YTSL470 and 563YTVV566, which, together, account for the gE CT-mediated efficient cell-to-cell spread of BHV-1 in epithelial cells. Here, we determined that in primary neuron cultures in vitro, the individual alanine exchange Y467A or Y563A mutants had significantly diminished anterograde axonal spread. Remarkably, the double-alanine-exchanged Y467A/Y563A mutant virus was not transported anterogradely. Following intranasal infection of rabbits, both wild-type (wt) and the Y467A/Y563A mutant viruses established latency in the TG. Upon dexamethasone-induced reactivation, both wt and the mutant viruses reactivated and replicated equally efficiently in the TG. However, upon reactivation, only the wt, not the mutant, was isolated from nasal swabs. Therefore, the gE-CT tyrosine residues Y467 and Y563 together are required for gE CT-mediated anterograde neuronal transport.


Assuntos
Transporte Biológico/fisiologia , Glicoproteínas/metabolismo , Herpesvirus Bovino 1/fisiologia , Neurônios/virologia , Tirosina/metabolismo , Animais , Bovinos , Doenças dos Bovinos/virologia , Linhagem Celular , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Dispositivos Lab-On-A-Chip , Coelhos , Gânglio Trigeminal/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Ativação Viral , Latência Viral , Eliminação de Partículas Virais
10.
Virology ; 548: 136-151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32838935

RESUMO

Bovine herpesvirus envelope glycoprotein E (gE) and, in particular, the gE cytoplasmic tail (CT) is a virulence determinant in cattle. Also, the gE CT contributes to virus cell-to-cell spread and anterograde neuronal transport. In this study, our goal was to map the gE CT sub-domains that contribute to virus cell-to-cell spread property. A panel of gE-CT specific mutant viruses was constructed and characterized, in vitro, with respect to their plaque phenotypes, gE recycling and gE basolateral membrane targeting. The results revealed that disruption of the tyrosine-based motifs, 467YTSL470 and 563YTVV566, individually produced smaller plaque phenotypes than the wild type. However, they were slightly larger than the gE CT-null virus plaques. The Y467A mutation affected the gE endocytosis, gE trans-Golgi network (TGN) recycling, and gE virion incorporation properties. However, the Y563A mutation affected only the gE basolateral cell-surface redistribution function. Notably, the simultaneous Y467A/Y563A mutations produced gE CT-null virus-like plaque phenotypes.


Assuntos
Doenças dos Bovinos/virologia , Citoplasma/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Bovinos , Endocitose , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Proteínas Virais/genética , Rede trans-Golgi/virologia
11.
Pathogens ; 9(8)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824331

RESUMO

Endemically infected European wild boar are considered a major reservoir of African swine fever virus in Europe. While high lethality was observed in the majority of field cases, strains of moderate virulence occurred in the Baltic States. One of these, "Estonia 2014", led to a higher number of clinically healthy, antibody-positive animals in the hunting bag of North-Eastern Estonia. Experimental characterization showed high virulence in wild boar but moderate virulence in domestic pigs. Putative pathogenic differences between wild boar and domestic pigs are unresolved and comparative pathological studies are limited. We here report on a kinetic experiment in both subspecies. Three animals each were euthanized at 4, 7, and 10 days post infection (dpi). Clinical data confirmed higher virulence in wild boar although macroscopy and viral genome load in blood and tissues were comparable in both subspecies. The percentage of viral antigen positive myeloid cells tested by flow cytometry did not differ significantly in most tissues. Only immunohistochemistry revealed consistently higher viral antigen loads in wild boar tissues in particular 7 dpi, whereas domestic pigs already eliminated the virus. The moderate virulence in domestic pigs could be explained by a more effective viral clearance.

12.
J Vet Diagn Invest ; 27(4): 449-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26179095

RESUMO

Infections with Classical swine fever virus (CSFV) are a major economic threat to pig production. To combat CSF outbreaks and to maintain trade, new marker vaccines were developed that allow differentiation of infected from vaccinated animals (DIVA principle). The chimeric pestivirus CP7_E2alf was shown to be safe and efficacious. Its DIVA strategy is based on the detection of CSFV E(rns)-specific antibodies that are only developed on infection. However, for the new marker vaccine to be considered a valuable control tool, a validated discriminatory assay is needed. One promising candidate is the already commercially available enzyme-linked immunosorbent assay, PrioCHECK CSFV E(rns) ELISA (Prionics BV, Lelystad, The Netherlands). Four laboratories of different European Union member states tested 530 serum samples and country-specific field sera from domestic pigs and wild boar. The ELISA displayed a good robustness. However, based on its reproducibility and repeatability, ranges rather than single values for diagnostic sensitivity and specificity were defined. The ELISA displayed a sensitivity of 90-98% with sera from CSFV-infected domestic pigs. A specificity of 89-96% was calculated with sera from domestic pigs vaccinated once with CP7_E2alf. The ELISA detected CSFV infections in vaccinated domestic pigs with a sensitivity of 82-94%. The sensitivity was lower with sera taken ≤21 days post-challenge indicating that the stage of CSFV infection had a considerable influence on testing. Taken together, the PrioCHECK CSFV E(rns) ELISA can be used for detection of CSFV infections in CP7_E2alf-vaccinated and nonvaccinated domestic pig populations, but should only be applied on a herd basis by testing a defined number of animals.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Peste Suína Clássica/virologia , Animais , Anticorpos Antivirais/sangue , Peste Suína Clássica/sangue , Peste Suína Clássica/prevenção & controle , Vírus da Febre Suína Clássica/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/veterinária , Países Baixos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Vacinas Atenuadas/uso terapêutico , Vacinas Virais/uso terapêutico
13.
Vaccine ; 32(39): 4909-15, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25066735

RESUMO

Bovine herpesvirus 1 (BoHV-1) causes respiratory infections and abortions in cattle, and is an important component of bovine respiratory disease complex, which causes a considerable economic loss worldwide. Several efforts have been made to produce safer and more effective vaccines. One of these vaccines is a glycoprotein E (gE)-deleted marker vaccine which is currently mandated for use in EU countries. In the present study, we have constructed a three-gene-mutated BoHV-1 vaccine virus (UL49.5 luminal domain residues 30-32 and cytoplasmic tail residues 80-96 deleted, gE cytoplasmic tail- and entire Us9-deleted) and compared its protective vaccine efficacy in calves after intranasal vaccination with that of a gE-deleted virus. Following vaccination, both the triple mutant and gE-deleted vaccine virus replicated well in the nasal epithelium of the calves. The vaccinated calves did not show any clinical signs. Four weeks post-vaccination, the animals were challenged intranasally with a virulent BoHV-1 wild-type virus. Based on clinical signs, both the gE-deleted and triple mutant group were protected equally against the virulent BoHV-1 challenge. However, based on the quantity and duration of nasal viral shedding, virus neutralizing antibody and cellular immune responses, the triple mutant virus vaccine induced a significantly better protective immune response than the gE-deleted virus vaccine. Notably, after the virulent BoHV-1 challenge, the triple mutant virus vaccinated group cleared the challenge virus three days earlier than the BoHV-1 gE-deleted virus vaccinated group.


Assuntos
Doenças dos Bovinos/prevenção & controle , Infecções por Herpesviridae/veterinária , Proteínas Virais/genética , Vacinas Virais/imunologia , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/imunologia , Imunidade Celular , Interferon gama/sangue , Masculino , Testes de Neutralização , Distribuição Aleatória , Deleção de Sequência , Vacinas Atenuadas/imunologia , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA