Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Chemistry ; 29(72): e202302284, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37699127

RESUMO

Nature uses reactive components embedded in biological membranes to perform light-driven photosynthesis. Here, a model artificial photosynthetic system for light-driven hydrogen (H2 ) evolution is reported. The system is based on liposomes where amphiphilic ruthenium trisbipyridine based photosensitizer (RuC9 ) and the H2 evolution reaction (HER) catalyst [Mo3 S13 ]2- are embedded in biomimetic phospholipid membranes. When DMPC was used as the main lipid of these light-active liposomes, increased catalytic activity (TONCAT ~200) was observed compared to purely aqueous conditions. Although all tested lipid matrixes, including DMPC, DOPG, DPPC and DOPG liposomes provided similar liposomal structures according to TEM analysis, only DMPC yielded high H2 amounts. In situ scanning electrochemical microscopy (SECM) measurements using Pd microsensors revealed an induction period of around 26 minutes prior to H2 evolution, indicating an activation mechanism which might be induced by the fluid-gel phase transition of DMPC at room temperature. Stern-Volmer-type quenching studies revealed that electron transfer dynamics from the excited state photosensitizer are most efficient in the DMPC lipid environment giving insight for design of artificial photosynthetic systems using lipid bilayer membranes.


Assuntos
Bicamadas Lipídicas , Lipossomos , Bicamadas Lipídicas/química , Lipossomos/química , Dimiristoilfosfatidilcolina/química , Fármacos Fotossensibilizantes , Fosfolipídeos/química
2.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838893

RESUMO

Rhenium(I) complexes of type [Re(CO)3(NN)Cl] (NN = α-diimine) with MLCT absorption in the orange-red region of the visible spectrum have been synthesized and fully characterized, including single crystal X-ray diffraction on two complexes. The strong bathochromic shift of MLCT absorption was achieved through extension of the π-system of the electron-poor bidiazine ligand 4,4'-bipyrimidine by the addition of fused phenyl rings, resulting in 4,4'-biquinazoline. Furthermore, upon anionic cyclization of the twisted bidiazine, a new 4N-doped perylene ligand, namely, 1,3,10,12-tetraazaperylene, was obtained. Electrochemical characterization revealed a significant stabilization of the LUMO in this series, with the first reduction of the azaperylene found at E1/2(0/-) = -1.131 V vs. Fc+/Fc, which is the most anodic half-wave potential observed for N-doped perylene derivatives so far. The low LUMO energies were directly correlated to the photophysical properties of the respective complexes, resulting in a strongly red-shifted MLCT absorption band in chloroform with a λmax = 586 nm and high extinction coefficients (ε586nm > 5000 M-1 cm-1) ranging above 700 nm in the case of the tetraazaperylene complex. Such low-energy MLCT absorption is highly unusual for Re(I) α-diimine complexes, for which these bands are typically found in the near UV. The reported 1,3,10,12-tetraazaperylene complex displayed the [Re(CO)3(α-diimine)Cl] complex with the strongest MLCT red shift ever reported. UV-Vis NIR spectroelectrochemical investigations gave further insights into the nature and stability of the reduced states. The electron-poor ligands explored herein open up a new path for designing metal complexes with strongly red-shifted absorption, thus enabling photocatalysis and photomedical applications with low-energy, tissue-penetrating red light in future.


Assuntos
Complexos de Coordenação , Perileno , Ligantes , Luz , Complexos de Coordenação/química , Cristalografia por Raios X
3.
J Am Chem Soc ; 144(42): 19353-19364, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36250745

RESUMO

Photosystem II, the natural water-oxidizing system, is a large protein complex embedded in a phospholipid membrane. A much simpler system for photocatalytic water oxidation consists of liposomes functionalized with amphiphilic ruthenium(II)-tris-bipyridine photosensitizer (PS) and 6,6'-dicarboxylato-2,2'-bipyridine-ruthenium(II) catalysts (Cat) with a water-soluble sacrificial electron acceptor (Na2S2O8). However, the effect of embedding this photocatalytic system in liposome membranes on the mechanism of photocatalytic water oxidation was not well understood. Here, several phenomena have been identified by spectroscopic tools, which explain the drastically different kinetics of water photo-oxidizing liposomes, compared with analogous homogeneous systems. First, the oxidative quenching of photoexcited PS* by S2O82- at the liposome surface occurs solely via static quenching, while dynamic quenching is observed for the homogeneous system. Moreover, the charge separation efficiency after the quenching reaction is much smaller than unity, in contrast to the quantitative generation of PS+ in homogeneous solution. In parallel, the high local concentration of the membrane-bound PS induces self-quenching at 10:1-40:1 molar lipid-PS ratios. Finally, while the hole transfer from PS+ to catalyst is rather fast in homogeneous solution (kobs > 1 × 104 s-1 at [catalyst] > 50 µM), in liposomes at pH = 4, the reaction is rather slow (kobs ≈ 17 s-1 for 5 µM catalyst in 100 µM DMPC lipid). Overall, the better understanding of these productive and unproductive pathways explains what limits the rate of photocatalytic water oxidation in liposomal vs homogeneous systems, which is required for future optimization of light-driven catalysis within self-assembled lipid interfaces.


Assuntos
Rutênio , Água , Água/química , Bicamadas Lipídicas , Rutênio/química , Lipossomos , Fármacos Fotossensibilizantes/química , 2,2'-Dipiridil , Complexo de Proteína do Fotossistema II , Dimiristoilfosfatidilcolina , Oxirredução
4.
J Am Chem Soc ; 144(21): 9399-9412, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594410

RESUMO

Light-driven conversion of CO2 to chemicals provides a sustainable alternative to fossil fuels, but homogeneous systems are typically limited by cross reactivity between different redox half reactions and inefficient charge separation. Herein, we present the bioinspired development of amphiphilic photosensitizer and catalyst pairs that self-assemble in lipid membranes to overcome some of these limitations and enable photocatalytic CO2 reduction in liposomes using precious metal-free catalysts. Using sodium ascorbate as a sacrificial electron source, a membrane-anchored alkylated cobalt porphyrin demonstrates higher catalytic CO production (1456 vs 312 turnovers) and selectivity (77 vs 11%) compared to its water-soluble nonalkylated counterpart. Time-resolved and steady-state spectroscopy revealed that self-assembly facilitates this performance enhancement by enabling a charge-separation state lifetime increase of up to two orders of magnitude in the dye while allowing for a ninefold faster electron transfer to the catalyst. Spectroelectrochemistry and density functional theory calculations of the alkylated Co porphyrin catalyst support a four-electron-charging mechanism that activates the catalyst prior to catalysis, together with key catalytic intermediates. Our molecular liposome system therefore benefits from membrane immobilization and provides a versatile and efficient platform for photocatalysis.


Assuntos
Lipossomos , Porfirinas , Dióxido de Carbono/química , Catálise , Elétrons
5.
Langmuir ; 38(31): 9697-9707, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904352

RESUMO

Nonreactive surfactant molecules have long been used and characterized for a wide range of applications in industries, life science, and everyday life. Recently, new types of functional amphiphilic molecules have emerged that bear another function, for example, a light-absorbing action, or catalytic properties. However, the surfactant properties of these molecules remain to date essentially unknown. In this context, we investigated here the interfacial activity of photocatalytic surfactants based on a ruthenium(II) tris-bipyridine core, functionalized with two alkyl tails. We realized a systematic characterization of the surfactant properties of these molecules at a water-air interface and studied the effect of the alkyl chain length and of the counterions (hexafluorophosphate or chloride) on these properties. Our data demonstrate that ruthenium surfactants with chloride counteranions form a denser layer at the interface, but their surfactant properties can dramatically deteriorate when the chain length of the alkyl tail increases, leading to simple hydrophobic molecules with poor surfactant properties for the longest chains (C17). These findings pave the way for a better use and understanding of photocatalytic soft interfaces.

6.
J Phys Chem A ; 126(43): 8070-8081, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36260519

RESUMO

Calculations of Förster Resonance Energy Transfer (FRET) often neglect the influence of different chromophore orientations or changes in the spectral overlap. In this work, we present two computational approaches to estimate the energy transfer rate between chromophores embedded in lipid bilayer membranes. In the first approach, we assess the transition dipole moments and the spectral overlap by means of quantum chemical calculations in implicit solvation, and we investigate the alignment and distance between the chromophores in classical molecular dynamics simulations. In the second, all properties are evaluated integrally with hybrid quantum mechanical/molecular mechanics (QM/MM) calculations. Both approaches come with advantages and drawbacks, and despite the fact that they do not agree quantitatively, they provide complementary insights on the different factors that influence the FRET rate. We hope that these models can be used as a basis to optimize energy transfers in nonisotropic media.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Teoria Quântica , Bicamadas Lipídicas , Simulação de Dinâmica Molecular
7.
Chem Soc Rev ; 50(8): 4833-4855, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33659967

RESUMO

Artificial photosynthesis has experienced rapid developments aimed at producing photocatalytic systems for the synthesis of chemical energy carriers. Conceptual advances of solar fuel systems have been inspired by improved understanding of natural photosynthesis and its key operational principles: (a) light harvesting, (b) charge separation, (c) directional proton and electron transport between reaction centres and across membranes, (d) water oxidation and (e) proton or CO2 reduction catalysis. Recently, there has been a surge of bio-inspired photosynthetic assemblies that use liposomes as nanocompartments to confine reaction spaces and enable vectorial charge transport across membranes. This approach, already investigated in the 1980s, offers in principle a promising platform for solar fuel synthesis. However, the fundamental principles governing the supramolecular assemblies of lipids and photoactive surfactant-like molecules in membranes, are intricate, and mastering membrane-supported photochemistry requires thorough understanding of the science behind liposomes. In this review, we provide an overview of approaches and considerations to construct a (semi)artificial liposome for solar fuel production. Key features to consider for the use of liposomes in solar fuel synthesis are highlighted, including the understanding of the orientation and binding of different components along the membrane, the controlled electron transport between the reaction centres, and the generation of proton gradients as driving force. Together with a list of experimental techniques for the characterisation of photoactive liposomes, this article provides the reader with a roadmap towards photocatalytic fuel production at the interface of lipid membranes and aqueous media.


Assuntos
Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Energia Solar , Água/metabolismo , Bicamadas Lipídicas/química , Lipossomos/química , Água/química
8.
Angew Chem Int Ed Engl ; 61(28): e202114106, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35698245

RESUMO

Light-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment. This Scientific Perspective highlights the importance of collecting and reporting experimental data in homogeneous and heterogeneous light-driven catalysis. A critical analysis of the benefits and limitations of the commonly used experimental indicators is provided. Data collection and reporting according to FAIR principles is discussed in the context of future automated data analysis. The authors propose a minimum dataset as a basis for unified collecting and reporting of experimental data in homogeneous and heterogeneous light-driven catalysis. The community is encouraged to support the future development of this parameter list through an open online repository.

9.
Chembiochem ; 22(22): 3140-3147, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34223700

RESUMO

Lipid bilayer membranes are ubiquitous in natural chemical conversions. They enable self-assembly and compartmentalization of reaction partners and it becomes increasingly evident that a thorough fundamental understanding of these concepts is highly desirable for chemical reactions and solar energy conversion with artificial systems. This minireview focusses on selected case studies from recent years, most of which were inspired by either membrane-facilitated light harvesting or respective charge transfer. The main focus is on highly biomimetic liposomes with artificial chromophores, and some cases for polymer-membranes will be made. Furthermore, we categorized these studies into energy transfer and electron transfer, with phospholipid vesicles, and polymer membranes for light-driven reactions.


Assuntos
Materiais Biomiméticos/química , Bicamadas Lipídicas/química , Energia Solar , Transferência de Energia , Estrutura Molecular
10.
Chemistry ; 27(9): 2886, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33617088

RESUMO

Invited for the cover of this issue are Andrea Pannwitz, Sylvestre Bonnet and co-workers at Leiden University and Johns Hopkins University. The image depicts an observer watching over a lipid bilayer "landscape" and a sky full of luminescent giant vesicles. Read the full text of the article at 10.1002/chem.202003391.

11.
Chemistry ; 27(9): 3013-3018, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32743875

RESUMO

Photosystem I (PS I) is a transmembrane protein that assembles perpendicular to the membrane, and performs light harvesting, energy transfer, and electron transfer to a final, water-soluble electron acceptor. We present here a supramolecular model of it formed by a bicationic oligofluorene 12+ bound to the bisanionic photoredox catalyst eosin Y (EY2- ) in phospholipid bilayers. According to confocal microscopy, molecular modeling, and time dependent density functional theory calculations, 12+ prefers to align perpendicularly to the lipid bilayer. In presence of EY2- , a strong complex is formed (Ka =2.1±0.1×106 m-1 ), which upon excitation of 12+ leads to efficient energy transfer to EY2- . Follow-up electron transfer from the excited state of EY2- to the water-soluble electron donor EDTA was shown via UV-Vis absorption spectroscopy. Overall, controlled self-assembly and photochemistry within the membrane provides an unprecedented yet simple synthetic functional mimic of PS I.


Assuntos
Transferência de Energia/efeitos da radiação , Luz , Bicamadas Lipídicas/química , Bicamadas Lipídicas/efeitos da radiação , Fosfolipídeos/química , Fosfolipídeos/efeitos da radiação , Complexo de Proteína do Fotossistema I/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Fotoquímica
12.
Chemistry ; 27(68): 17203-17212, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34726811

RESUMO

Covalent functionalisation with alkyl tails is a common method for supporting molecular catalysts and photosensitisers onto lipid bilayers, but the influence of the alkyl chain length on the photocatalytic performances of the resulting liposomes is not well understood. In this work, we first prepared a series of rhenium-based CO2 -reduction catalysts [Re(4,4'-(Cn H2n+1 )2 -bpy)(CO)3 Cl] (ReCn ; 4,4'-(Cn H2n+1 )2 -bpy=4,4'-dialkyl-2,2'-bipyridine) and ruthenium-based photosensitisers [Ru(bpy)2 (4,4'-(Cn H2n+1 )2 -bpy)](PF6 )2 (RuCn ) with different alkyl chain lengths (n=0, 9, 12, 15, 17, and 19). We then prepared a series of PEGylated DPPC liposomes containing RuCn and ReCn , hereafter noted Cn , to perform photocatalytic CO2 reduction in the presence of sodium ascorbate. The photocatalytic performance of the Cn liposomes was found to depend on the alkyl tail length, as the turnover number for CO (TON) was inversely correlated to the alkyl chain length, with a more than fivefold higher CO production (TON=14.5) for the C9 liposomes, compared to C19 (TON=2.8). Based on immobilisation efficiency quantification, diffusion kinetics, and time-resolved spectroscopy, we identified the main reason for this trend: two types of membrane-bound RuCn species can be found in the membrane, either deeply buried in the bilayer and diffusing slowly, or less buried with much faster diffusion kinetics. Our data suggest that the higher photocatalytic performance of the C9 system is due to the higher fraction of the more mobile and less buried molecular species, which leads to enhanced electron transfer kinetics between RuC9 and ReC9 .


Assuntos
Lipossomos , Compostos Organometálicos , Dióxido de Carbono , Elétrons , Cinética
13.
Chemistry ; 26(44): 9900-9904, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32154603

RESUMO

The inverse electron demand Diels-Alder pyridazine elimination reaction between tetrazines and allylic substituted trans-cyclooctenes (TCOs) is a key player in bioorthogonal bond cleavage reactions. Determining the rate of elimination of alkylamine substrates has so far proven difficult. Here, we report a fluorogenic tool consisting of a TCO-linked EDANS fluorophore and a DABCYL quencher for accurate determination of both the click and release rate constants for any tetrazine at physiologically relevant concentrations.

14.
Chemistry ; 24(31): 7830-7833, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29682809

RESUMO

Two luminescent heteroleptic RuII complexes with a 2,2'-biimidazole (biimH2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems.

15.
Eur J Inorg Chem ; 2018(37): 4117-4124, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31031567

RESUMO

In this work the synthesis, photochemistry, and streptavidin interaction of new [Ru(tpy)(bpy)(SRR')](PF6)2 complexes where the R' group contains a free biotin ligand, are described. Two different ligands SRR' were investigated: An asymmetric ligand 1 where the Ru-bound thioether is a N-acetylmethionine moiety linked to the free biotin fragment via a triethylene glycol spacer and a symmetrical ligand 2 containing two identical biotin moieties. The coordination of these two ligands to the precursor [Ru(tpy)(bpy)Cl]Cl was studied in water at 80 °C. In such conditions the coordination of the asymmetric ligand 1 occurred under thermodynamic control. After the reaction, a mononuclear and a binuclear complex were isolated. In the mononuclear complex, the ratio of methionine- {[6](PF6)2} vs. biotin-bound {[7](PF6)2} regioisomer was 5.3 and the free biotin fragment of [6](PF6)2 allowed to purify it from its isomer [7](PF6)2 at small scales using avidin affinity chromatography. Coordination of the symmetrical ligand 2 afforded [Ru(tpy)(bpy)(2)](PF6)2 {[8](PF6)2} in synthetically useful scales (100 mg), good yield (82 %), and without traces of the binuclear impurity. In this complex, one of the biotin remains free whereas the second one is coordinated to ruthenium. Photochemical release of ligand 2 from [8](PF6)2 occurred upon blue light irradiation (465 nm) with a photosubstitution quantum yield of 0.011 that was independent of the binding of streptavidin to the free biotin ligand.

16.
J Am Chem Soc ; 139(38): 13308-13311, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28906113

RESUMO

The first artificial donor-sensitizer-acceptor compound in which photoinduced long-range electron transfer is coupled to donor deprotonation and acceptor protonation is reported. The long-lived photoproduct stores energy in the form of a radical pair state in which the charges of the donor and the acceptor remain unchanged, much in contrast to previously investigated systems that exhibit charge-separated states comprised of electron-hole pairs. This finding is relevant for light-driven accumulation of redox equivalents, because it exemplifies how the buildup of charge can be avoided yet light energy can be stored. Proton-coupled electron transfer (PCET) reactions at a phenol donor and a monoquat acceptor triggered by excitation of a Ru(II) sensitizer enable this form of photochemical energy storage. Our triad emulates photosystem II more closely than previously investigated systems, because tyrosine Z is oxidized and deprotonated, whereas plastoquinone B is reduced and protonated.

17.
Chemistry ; 23(71): 18019-18024, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29024136

RESUMO

Long-lived photo-driven charge separation is demonstrated by assembling a triad on a protein scaffold. For this purpose, a biotinylated triarylamine was added to a RuII -streptavidin conjugate bearing a methyl viologen electron acceptor covalently linked to the N-terminus of streptavidin. To improve the rate and lifetime of the electron transfer, a negative patch consisting of up to three additional negatively charged amino acids was engineered through mutagenesis close to the biotin-binding pocket of streptavidin. Time-resolved laser spectroscopy revealed that the covalent attachment and the negative patch were beneficial for charge separation within the streptavidin hosted triad; the charge separated state was generated within the duration of the excitation laser pulse, and lifetimes up to 3120 ns could be achieved with the optimized supramolecular triad.

18.
Org Biomol Chem ; 14(30): 7197-201, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27411288

RESUMO

Electron transfer from a biotinylated electron donor to photochemically generated Ru(iii) complexes covalently anchored to streptavidin is demonstrated by means of time-resolved laser spectroscopy. Through site-selective mutagenesis, a single cysteine residue was engineered at four different positions on streptavidin, and a Ru(ii) tris-diimine complex was then bioconjugated to the exposed cysteines. A biotinylated triarylamine electron donor was added to the Ru(ii)-modified streptavidins to afford dyads localized within a streptavidin host. The resulting systems were subjected to electron transfer studies. In some of the explored mutants, the phototriggered electron transfer between triarylamine and Ru(iii) is complete within 10 ns, thus highlighting the potential of such artificial metalloenzymes to perform photoredox catalysis.


Assuntos
Biotinilação/métodos , Complexos de Coordenação/química , Rutênio/química , Estreptavidina/química , Transporte de Elétrons , Cinética , Luz , Estrutura Molecular , Oxirredução
19.
Phys Chem Chem Phys ; 18(16): 11374-82, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27094541

RESUMO

Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy)2pyimH](2+) (bpy = 2,2'-bipyridine; pyimH = 2-(2'-pyridyl)imidazole) to N-methyl-4,4'-bipyridinium (monoquat, MQ(+)) was studied. While this complex has been investigated previously, our study is the first to show that the formal bond dissociation free energy (BDFE) of the imidazole-N-H bond decreases from (91 ± 1) kcal mol(-1) in the electronic ground state to (43 ± 5) kcal mol(-1) in the lowest-energetic (3)MLCT excited state. This makes the [Ru(bpy)2pyimH](2+) complex a very strong (formal) hydrogen atom donor even when compared to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT) reactions with a variety of different substrates. Mechanistically, formal HAT between (3)MLCT excited [Ru(bpy)2pyimH](2+) and monoquat in buffered 1 : 1 (v : v) CH3CN/H2O was found to occur via a sequence of reaction steps involving electron transfer from Ru(ii) to MQ(+) coupled to release of the N-H proton to buffer base, followed by protonation of reduced MQ(+) by buffer acid. Our study is relevant in the larger contexts of photoredox catalysis and light-to-chemical energy conversion.

20.
Mol Syst Des Eng ; 8(7): 842-852, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37404447

RESUMO

We present a method of enabling photochemical reactions in water by using biomimetic, water-soluble liposomes and a specifically functionalized perylene diimide chromophore. Linking two flexible saturated C4-alkyl chains with terminal positively charged trimethylammonium groups to the rigid perylene diimide core yielded [1]2+ allowing for its co-assembly at the lipid bilayer interface of DOPG liposomes (DOPG = 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) with a preferred orientation and in close proximity to the water interface. According to molecular dynamics simulations the chromophore aligns preferably parallel to the membrane surface which is supported by confocal microscopy. Irradiation experiments with visible light and in the presence of a negatively charged, water-soluble oxidant were slower in the DOPG-membrane than under acetonitrile-water reaction conditions. The generated radical species was characterized by EPR spectroscopy in an acetonitrile-water mixture and associated to the DOPG-membrane. Time-resolved emission studies revealed a static quenching process for the initial electron transfer from photoexcited [1]2+ to the water soluble oxidant. The findings presented in this study yield design principles for the functionalization of lipid bilayer membranes which will be relevant for the molecular engineering of artificial cellular organelles and nano-reactors based on biomimetic vesicles and membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA