Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0064824, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016592

RESUMO

Mycobacteroides abscessus (Mab or Mycobacterium abscessus) is a fast-growing mycobacterium that is ubiquitous in the environment and can cause opportunistic disease in people with lung comorbidity and immunodeficiency. There are no Food and Drug Administration-approved drugs for this disease, and repurposed antibiotics have a poor microbiological response. To address the need for effective new antibiotics, we determined the efficacy of epetraborole (EBO) against three Mab clinical isolates in a mouse model of lung Mab infection. Reduction in lung Mab burden over 4 weeks of treatment was the study end point. EBO was administered orally once daily at doses of 25 and 50 mg/kg, which achieved exposures approximating the once-daily dosing of 250 mg and 500 mg, respectively, in humans. EBO administration led to a gradual reduction in the lung Mab burden. After 4 weeks of treatment, the efficacies of 25 and 50 mg/kg EBO against isolates ATCC 19977 and M9501 were comparable. However, against isolate M9530, 50 mg/kg EBO was more efficacious than 25 mg/kg and comparable with parenteral imipenem, one of the most efficacious antibiotics against Mab. We also undertook a dose-ranging study by evaluating the efficacies of once-daily oral administration of 0.5, 5, 10, 25, and 100 mg/kg EBO against M9501 over 4 weeks. Once-daily oral 100 mg/kg EBO was as effective as twice-daily 100 mg/kg imipenem injection. Our study suggests that EBO could address the unmet need for effective oral treatment options for Mab lung disease, given the high rates of Mab drug resistance and limited tolerable intravenous options.

2.
Antimicrob Agents Chemother ; 66(6): e0053622, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638855

RESUMO

Mycobacteroides abscessus (Mab) is an emerging environmental microbe that causes chronic lung disease in patients with compromised lung function such as cystic fibrosis and bronchiectasis. It is intrinsically resistant to most antibiotics, therefore there are only few antibiotics that can be repurposed to treat Mab disease. Although current recommendations require daily intake of multiple antibiotics for more than a year, cure rate is low and often associated with significant adverse events. Here, we describe in vivo efficacy of T405, a recently discovered ß-lactam antibiotic of the penem subclass, in a mouse model of pulmonary Mab infection. Imipenem, one of the standard-of-care drugs to treat Mab disease, and also a ß-lactam antibiotic from a chemical class similar to T405, was included as a comparator. Probenecid was included with both T405 and imipenem to reduce the rate of their renal clearance. T405 exhibited bactericidal activity against Mab from the onset of treatment and reduced Mab lung burden at a rate similar to that exhibited by imipenem. The MIC of T405 against Mab was unaltered after 4 weeks of exposure to T405 in the lungs of mice. Using an in vitro assay, we also demonstrate that T405 in combination with imipenem, cefditoren or avibactam exhibits synergism against Mab. Additionally, we describe a scheme for synthesis and purification of T405 on an industrial scale. These attributes make T405 a promising candidate for further preclinical assessment to treat Mab disease.


Assuntos
Imipenem , Infecções por Mycobacterium não Tuberculosas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Meropeném/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , beta-Lactamas/uso terapêutico
3.
mSphere ; 9(7): e0038124, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38980071

RESUMO

Treatment outcomes for Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) disease are still unsatisfactory, mainly due to issues with drug toxicity, tolerability, and efficacy. Treating Mab disease is challenging due to its high baseline antibiotic resistance, initial requirement for intravenous therapy, and poor medication tolerance. Omadacycline, a new tetracycline, is active against Mab. Since any new antibiotic effective against Mab is expected to be used in combination with other antibiotics, we evaluated the efficacy of two triple-drug combinations comprising omadacycline, omadacycline + amikacin + imipenem, and omadacycline + clofazimine + linezolid against two contemporary Mab clinical isolates in a mouse model of Mab lung disease. Antibiotic administration was initiated 1-week post-infection and was given daily, with Mab burden in the lungs at treatment completion serving as the endpoint. Omadacycline alone moderately reduced Mab levels and maintained better health in mice compared to untreated ones, which typically suffered from the infection. The omadacycline + clofazimine + linezolid combination showed immediate bactericidal activity and enhanced efficacy over 6 weeks, particularly against the more resistant strain (M9507). However, the clofazimine + linezolid combination lacked early bactericidal activity. When combined with amikacin and imipenem, omadacycline did not improve the regimen's effectiveness over 4 weeks of treatment. Our study showed that omadacycline + clofazimine + linezolid exhibited significant bactericidal activity over an extended treatment duration. However, adding omadacycline to amikacin and imipenem did not improve regimen effectiveness against the evaluated clinical isolates within 4 weeks. Further research in Mab disease patients is needed to determine the most effective omadacycline-containing regimen.IMPORTANCEMycobacteroides abscessus is a common environmental bacterium that causes infections in people with compromised lung function, including those with bronchiectasis, cystic fibrosis, chronic obstructive pulmonary disease, and weakened immune systems, especially among older individuals. Treating M. abscessus disease is challenging due to the limited effectiveness and toxicity of current antibiotics, which often require prolonged use. Omadacycline, a new antibiotic, shows promise against M. abscessus. Using a mouse model that mimics M. abscessus disease in humans, we studied the effectiveness of including omadacycline with recommended antibiotics. Adding omadacycline to clofazimine and linezolid significantly improved treatment outcomes, rapidly clearing the bacteria from the lungs and maintaining effectiveness throughout. This oral combination is convenient for patients. However, adding omadacycline to amikacin and imipenem did not improve treatment effectiveness within 4 weeks. Further study with M. abscessus patients is necessary to optimize omadacycline-based treatment strategies for this disease.


Assuntos
Amicacina , Antibacterianos , Clofazimina , Modelos Animais de Doenças , Quimioterapia Combinada , Imipenem , Linezolida , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Tetraciclinas , Animais , Clofazimina/administração & dosagem , Clofazimina/uso terapêutico , Linezolida/administração & dosagem , Linezolida/uso terapêutico , Camundongos , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Amicacina/administração & dosagem , Amicacina/uso terapêutico , Tetraciclinas/administração & dosagem , Tetraciclinas/uso terapêutico , Tetraciclinas/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Imipenem/administração & dosagem , Imipenem/uso terapêutico , Imipenem/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Feminino , Resultado do Tratamento , Testes de Sensibilidade Microbiana , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Administração Oral , Pulmão/microbiologia
4.
Tuberculosis (Edinb) ; 146: 102482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364332

RESUMO

Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) causes opportunistic pulmonary and soft tissue infections that are difficult to cure with existing treatments. Omadacycline, a new tetracycline antibiotic, exhibits potent in vitro and in vivo activity against Mab. As regimens containing multiple antibiotics are required to produce a durable cure for Mab disease, we assessed efficacies of three three-drug combinations in a pre-clinical mouse model of pulmonary Mab disease to identify companion drugs with which omadacycline exhibits the highest efficacy. Additionally, we assessed the susceptibility of Mab recovered from mouse lungs after four weeks of exposure to the three triple-drug regimens. Among the three-drug regimens, omadacycline + imipenem + amikacin produced the largest reduction in Mab burden, whereas omadacycline + imipenem + linezolid exhibited the most effective early bactericidal activity. Omadacycline + linezolid + clofazimine, a regimen that can be administered orally, lacked early bactericidal activity but produced a gradual reduction in the lung Mab burden over time. The robust efficacy exhibited by these three regimens in the mouse model supports their further evaluation in patients with Mab lung disease. As we were unable to isolate drug-resistant Mab mutants at the completion of four weeks of treatment, these triple-drug combinations show promise of producing durable cure and minimizing selection of resistant mutants.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Animais , Camundongos , Linezolida/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tetraciclinas/farmacologia , Tetraciclinas/uso terapêutico , Imipenem/farmacologia , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
5.
mSphere ; 8(2): e0066522, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36912629

RESUMO

Mycobacteroides abscessus is an opportunistic pathogen in people with structural lung conditions such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. Pulmonary M. abscessus infection causes progressive symptomatic and functional decline as well as diminished lung function and is often incurable with existing antibiotics. We investigated the efficacy of a new tetracycline, omadacycline, in combination with existing antibiotics recommended to treat this indication, in a mouse model of M. abscessus lung disease. Amikacin, azithromycin, bedaquiline, biapenem, cefoxitin, clofazimine, imipenem, linezolid, and rifabutin were selected as companions to omadacycline. M. abscessus burden in the lungs of mice over a 4-week treatment duration was considered the endpoint. Omadacycline in combination with linezolid, imipenem, cefoxitin, biapenem, or rifabutin exhibited early bactericidal activity compared to any single drug. Using three M. abscessus isolates, we also determined the in vitro frequency of spontaneous resistance against omadacycline to be between 1.9 × 10-10 and 6.2 × 10-10 and the frequency of persistence against omadacycline to be between 5.3 × 10-6 and 1.3 × 10-5. Based on these findings, the combination of omadacycline and select drugs that are included in the recent treatment guidelines may exhibit improved potency to treat M. abscessus lung disease. IMPORTANCE M. abscessus disease incidence is increasing in the United States. This disease is difficult to cure with existing antibiotics. In this study, we describe the efficacy of a new tetracycline antibiotic, omadacycline, in combination with an existing antibiotic to treat this disease. A mouse model of M. abscessus lung disease was used to assess the efficacies of these experimental treatment regimens. Omadacycline in combination with select existing antibiotics exhibited bactericidal activity during the early phase of treatment.


Assuntos
Fibrose Cística , Mycobacterium abscessus , Animais , Camundongos , Linezolida , Cefoxitina , Testes de Sensibilidade Microbiana , Antibacterianos/uso terapêutico , Tetraciclinas/uso terapêutico , Imipenem , Rifabutina
6.
Tuberculosis (Edinb) ; 138: 102288, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470124

RESUMO

The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 µg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas , Pulmão , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
7.
Tuberculosis (Edinb) ; 137: 102268, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228452

RESUMO

Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) can cause chronic pulmonary disease in the setting of structural lung conditions. Current treatment recommendations require at least one year of daily therapy with repurposed antibiotics. Yet these therapies are often ineffective and associated with significant adverse events. To address this challenge, research efforts are underway to develop new antibiotics and regimens. During the preclinical phase of treatment development, experimental agents require testing and comparison alongside positive controls that are known agents with clinical history. As there are no FDA approved treatments for this indication, here, we have considered repurposed antibiotics currently included in the recommendation for treating Mab disease as candidates for selection of an ideal standard comparator that can serve as a positive control in preclinical studies. Clofazimine meets the criteria for an ideal positive control as it can be administered via the least invasive route, requires only once-daily dosing, is well tolerated, and is widely available in high purity from independent sources. Using a mouse model of pulmonary Mab disease, we assessed for ideal dosages of clofazimine in C3HeB/FeJ and BALB/c mice in a six-week treatment window. Clofazimine, 25 mg/kg, once daily, produced desired reduction in Mab burden in the lungs of C3HeB/FeJ and BALB/c mice. Based on these findings, we conclude that clofazimine meets the criteria for a positive control comparator in mice for use in preclinical efficacy assessments of agents for treatment of Mab pulmonary disease. Although not included in the current standard-of-care for treating Mab disease, rifabutin, 20 mg/kg, also produced desired reduction in Mab lung burden in C3HeB/FeJ mice but not in BALB/c mice. IMPORTANCE: Mycobacteroides abscessus can cause life-threatening infections in patients with chronic lung conditions. New treatments are needed as cure rate using existing drugs is low. During pre-clinical phase of treatment development, it is important to compare the efficacy of the experimental drug against existing ones with known history. Here, we demonstrate that clofazimine, one of the antibiotics repurposed for treating Mab disease, can serve as a positive control comparator for efficacy assessments of experimental drugs and regimens to treat M. abscessus disease in mice.


Assuntos
Pneumopatias , Mycobacterium abscessus , Mycobacterium tuberculosis , Pneumonia , Humanos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumopatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA