Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(3): 1835-1846, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36608266

RESUMO

Photocatalysis has become a prominent tool in the arsenal of organic chemists to develop and (re)imagine transformations. However, only a handful of versatile organic photocatalysts (PCs) are available, hampering the discovery of new reactivities. Here, we report the design and complete physicochemical characterization of 9-aryl dihydroacridines (9ADA) and 12-aryl dihydrobenzoacridines (12ADBA) as strong reducing organic PCs. Punctual structural variations modulate their molecular orbital distributions and unlock locally or charge-transfer (CT) excited states. The PCs presenting a locally excited state showed better performances in photoredox defunctionalization processes (yields up to 92%), whereas the PCs featuring a CT excited state produced promising results in atom transfer radical polymerization under visible light (up to 1.21 D, and 98% I*). Unlike all the PC classes reported so far, 9ADA and 12ADBA feature a free NH group that enables a catalytic multisite proton-coupled electron transfer (MS-PCET) mechanism. This manifold allows the reduction of redox-inert substrates including aryl, alkyl halides, azides, phosphate and ammonium salts (Ered up to -2.83 vs SCE) under single-photon excitation. We anticipate that these new PCs will open new mechanistic manifolds in the field of photocatalysis by allowing access to previously inaccessible radical intermediates under one-photon excitation.

2.
Photochem Photobiol Sci ; 20(10): 1243-1255, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34570354

RESUMO

Dye-sensitized photoelectrochemical cells represent an appealing solution for artificial photosynthesis, aimed at the conversion of solar light into fuels or commodity chemicals. Extensive efforts have been directed towards the development of photoelectrodes combining semiconductor materials and organic dyes; the use of molecular components allows to tune the absorption and redox properties of the material. Recently, we have reported the use of a class of pentacyclic quinoid organic dyes (KuQuinone) chemisorbed onto semiconducting tin oxide as photoanodes for water oxidation. In this work, we investigate the effect of the SnO2 semiconductor thickness and morphology and of the dye-anchoring group on the photoelectrochemical performance of the electrodes. The optimized materials are mesoporous SnO2 layers with 2.5 µm film thickness combined with a KuQuinone dye with a 3-carboxylpropyl-anchoring chain: these electrodes achieve light-harvesting efficiency of 93% at the maximum absorption wavelength of 533 nm, and photocurrent density J up to 350 µA/cm2 in the photoelectrochemical oxidation of ascorbate, although with a limited incident photon-to-current efficiency of 0.075%. Calculations based on the density functional theory (DFT) support the role of the reduced species of the KuQuinone dye via a proton-coupled electron transfer as the competent species involved in the electron transfer to the tin oxide semiconductor. Finally, a preliminary investigation of the photoelectrodes towards benzyl alcohol oxidation is presented, achieving photocurrent density up to 90 µA/cm2 in acetonitrile in the presence of N-hydroxysuccinimide and pyridine as redox mediator and base, respectively. These results support the possibility of using molecular-based materials in synthetic photoelectrochemistry.

3.
J Phys Chem A ; 125(19): 4098-4113, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33973473

RESUMO

Solutions to the time-independent nuclear Schrödinger equation associated with the pseudorotational motion of three flexible cyclic molecules are presented and discussed. Structural relaxations related to the pseudorotational motion are described as functions of a pseudorotation angle ϕ which is formulated according to the definition of ring-puckering coordinates originally proposed by Cremer and Pople ( J. Am. Chem. Soc. 1975, 97 (6), 1354-1358). In order to take into account the interplay between pseudorotational and rotational motions, the rovibrational Hamiltonian matrices are formulated for the rotational quantum numbers J = 0 and J = 1. The rovibrational Hamiltonian matrices are constructed and diagonalized using a Python program developed by the authors. Suitable algorithms for (i) the construction of one-dimensional cuts of potential energy surfaces along the pseudorotation angle ϕ and (ii) the assignment of the vibrorotational wave functions (which are needed for the automatic calculation of rotational transition energies J = 0 → J = 1) are described and discussed.

4.
J Comput Chem ; 41(13): 1310-1323, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058615

RESUMO

The virtual-reality framework AVATAR (Advanced Virtual Approach to Topological Analysis of Reactivity) for the immersive exploration of potential-energy landscapes is presented. AVATAR is based on modern consumer-grade virtual-reality technology and builds on two key concepts: (a) the reduction of the dimensionality of the potential-energy surface to two process-tailored, physically meaningful generalized coordinates, and (b) the analogy between the evolution of a chemical process and a pathway through valleys (potential wells) and mountain passes (saddle points) of the associated potential energy landscape. Examples including the discovery of competitive reaction paths in simple A + BC collisional systems and the interconversion between conformers in ring-puckering motions of flexible rings highlight the innovation potential that augmented and virtual reality convey for teaching, training, and supporting research in chemistry.

5.
Phys Chem Chem Phys ; 22(36): 20238-20247, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32584345

RESUMO

Chemical bonding in a set of six cuprous complexes with simple nitriles (CN-, HNC, HCN, CH3NC, and CH3CN) is investigated by means of a recently devised analysis scheme framed in density-functional theory and quantitatively singling out concurrent charge flows such as σ donation and π backdonation. The results of our analysis are comparatively assessed against qualitative models for charge redistribution based on the popular concepts of octet rule and resonance structures, and the relative importance of different charge-flow channels relating to σ donation, π back-donation, polarization, and hyperconjugation is discussed on a quantitative basis.

6.
J Phys Chem A ; 124(5): 1011-1024, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922423

RESUMO

The infrared (IR) and vibrational circular dichroism (VCD) spectra of 2,3-butanediol and trans-1,2-cyclohexanediol from 900 to 7500 cm-1 (including mid-IR, fundamental CH and OH stretchings, and near-infrared regions) have been investigated by a combined experimental and computational strategy. The computational approach is rooted in density functional theory (DFT) computations of harmonic and leading anharmonic mechanical, electrical, and magnetic contributions, followed by a generalized second-order perturbative (GVPT2) evaluation of frequencies and intensities for all the above regions without introducing any ad hoc scaling factor. After proper characterization of large-amplitude motions, all resonances plaguing frequencies and intensities are taken into proper account. Comparison of experimental and simulated spectra allows unbiased assignment and interpretation of the most interesting features. The reliability of the GVPT2 approach for OH stretching fundamentals and overtones is confirmed by the remarkable agreement with a local mode model purposely tailored for the latter two regions. Together with the specific interest of the studied molecules, our results confirm that an unbiased assignment and interpretation of vibrational spectra for flexible medium-size molecules can be achieved by means of a nearly unsupervised reliable, robust, and user-friendly DFT/GVPT2 model.

7.
Chirality ; 32(6): 808-816, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32189418

RESUMO

The magnetic circular dichroism (MCD) spectra of metal complexes of tetrakis(thiadiazole)porphyrazines ([TTDPzM] with M = 2HI , ZnII , MgII (H2 O), and CdII ) have been recorded in dimethyl formamide solution. Together with the UV-Vis spectra, the MCD spectra provide useful information about the structure and electronic properties of the complexes. The experimental UV-Vis and MCD spectra compare pretty well with DFT calculations of two sorts, based either on the sum-over-states (SOS) approach or on the complex polarization propagator approach. They further corroborate the findings and interpretation of MCD spectra of porphyrazines based on the model of Michl for peripheral molecular orbitals. Magnetic circularly polarized luminescence (MCPL) spectra, quite uncommon in the literature, have been recorded for [TTDPzM] (M = 2HI , ZnII , MgII (H2 O)).

8.
Phys Chem Chem Phys ; 21(18): 9419-9432, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30997909

RESUMO

Circular dichroism spectra in the IR range (VCD = vibrational circular dichroism) and in the UV range (ECD = electronic circular dichroism) have been recorded for both enantiomers of simple mono-substituted ferrocenes containing chiral pendants: 1-acetoxyethylferrocene, 1, 1-methoxyethylferrocene, 2, and 1-hydroxyethylferrocene, 3; the related disubstituted 1,1'-bis(1-hydroxyethyl)ferrocene, 4, was also considered. These two types of spectra, with the support of DFT calculations, concur to unequivocally confirm the absolute configuration for 1-4. In particular, our computational results point out the clear advantage of using an anharmonic oscillator model for the interpretation of VCD spectra of chiral ferrocenes. Interesting conformational properties are either confirmed or established by the technique, like the eclipsed conformation of the two cyclopentadienyl rings and an intra-molecular interaction involving the OH for 3. For 4, NMR, VCD and IR spectra are compatible with dimer formation and in this case a distorted conformation is predicted. Of utmost importance for the absolute configuration assignment in mono-substituted ferrocenes, we were able to identify a diagnostic VCD band at 950 cm-1 and a (low intensity) ECD band that clearly indicate the absolute configuration of the whole series.

9.
ChemSusChem ; 16(5): e202201980, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36507568

RESUMO

Dye-sensitized photoanodes for C-H activation in organic substrates are assembled by vacuum sublimation of a commercially available quinacridone (QNC) dye in the form of nanosized rods onto fluorine-doped tin oxide (FTO), TiO2 , and SnO2 slides. The photoanodes display extended absorption in the visible range (450-600 nm) and ultrafast photoinduced electron injection (<1 ps, as revealed by transient absorption spectroscopy) of the QNC dye into the semiconductor. The proton-coupled electron-transfer reactivity of QNC is exploited for generating a nitrogen-based radical as its oxidized form, which is competent in C-H bond activation. The key reactivity parameter is the bond-dissociation free energy (BDFE) associated with the N⋅/N-H couple in QNC of 80.5±2.3 kcal mol-1 , which enables hydrogen atom abstraction from allylic or benzylic C-H moieties. A photoelectrochemical response is indeed observed for organic substrates characterized by C-H bonds with BDFE below the 80.5 kcal mol-1 threshold, such as γ-terpinene, xanthene, or dihydroanthracene. This work provides a rational, mechanistically oriented route to the design of dye-sensitized photoelectrodes for selective organic transformations.

10.
J Chem Theory Comput ; 16(8): 5218-5226, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32667793

RESUMO

The UPS spectra of six hydrocarbon cage compounds have been investigated by a Green-function approach in conjunction with a full harmonic treatment of vibrational modulation effects. The remarkable agreement with experimental results points out the reliability of the proposed computational approach and the strong interplay of stereoelectronic and vibrational effects in tuning the overall spectra.

11.
J Chem Theory Comput ; 15(7): 4280-4294, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31244128

RESUMO

Ring-puckering motion in 12 flexible cyclic molecules is investigated by calculation and analysis of two-dimensional potential-energy surfaces (PESs) using the so-called ring-puckering coordinates proposed by Cremer and Pople. The PESs are calculated by means of density-functional theory using a B2PLYP-D3BJ exchange-correlation functional with a maug-cc-pVTZ basis set, and results are compared to the available experimental and theoretical data. Special care is devoted to the aspect of symmetry in such two-dimensional PESs, which are here reported for the first time also for molecules whose planar form has symmetry lower than D5 h or C2 v. The issue of PES fitting and that of solving the nuclear dynamics using ring-puckering coordinates are also addressed. Analytical formulations of the computed PESs using suitable functional forms with a limited set of parameters are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA