RESUMO
This paper introduces a fuzzy logic-based autonomous ship deck landing system for fixed-wing unmanned aerial vehicles (UAVs). The ship is assumed to maintain a constant course and speed. The aim of this fuzzy logic landing model is to simplify the task of landing UAVs on moving ships in challenging maritime conditions, relieving operators from this demanding task. The designed UAV ship deck landing model is based on a fuzzy logic system (FLS), which comprises three interconnected subsystems (speed, lateral motion, and altitude components). Each subsystem consists of three inputs and one output incorporating various fuzzy rules to account for external factors during ship deck landings. Specifically, the FLS receives five inputs: the range from the deck, the relative wind direction and speed, the airspeed, and the UAV's flight altitude. The FLS outputs provide data on the speed of the UAV relative to the ship's velocity, the bank angle (BA), and the angle of descent (AOD) of the UAV. The performance of the designed intelligent ship deck landing system was evaluated using the standard configuration of MATLAB Fuzzy Toolbox.
RESUMO
This paper utilises statistical and entropy methods for the investigation of a 17-year PM10 time series recorded from five stations in Athens, Greece, in order to delineate existing stochastic and self-organisation trends. Stochastic patterns are analysed via lumping and sliding, in windows of various lengths. Decreasing trends are found between Windows 1 and 3500-4000, for all stations. Self-organisation is studied through Boltzmann and Tsallis entropy via sliding and symbolic dynamics in selected parts. Several values are below -2 (Boltzmann entropy) and 1.18 (Tsallis entropy) over the Boltzmann constant. A published method is utilised to locate areas for which the PM10 system is out of stochastic behaviour and, simultaneously, exhibits critical self-organised tendencies. Sixty-six two-month windows are found for various dates. From these, nine are common to at least three different stations. Combining previous publications, two areas are non-stochastic and exhibit, simultaneously, fractal, long-memory and self-organisation patterns through a combination of 15 different fractal and SOC analysis techniques. In these areas, block-entropy (range 0.650-2.924) is significantly lower compared to the remaining areas of non-stochastic but self-organisation trends. It is the first time to utilise entropy analysis for PM10 series and, importantly, in combination with results from previously published fractal methods.
RESUMO
Olfaction can enhance the experience of music, films, computer games and virtual reality applications. However, this area is less explored than other areas such as computer graphics and audio. Most advanced olfactory displays are designed for a specific experiment, they are hard to modify and extend, expensive, and/or can deliver a very limited number of scents. Additionally, current-generation olfactory displays make no decisions on if and when a scent should be released. This paper proposes a low-cost, easy to build, powerful smart olfactory display, that can release up to 24 different aromas and allow control of the quantity of the released aroma. The display is capable of absorbing back the aroma, in an attempt to clean the air prior to releasing a new aroma. Additionally, the display includes a smart algorithm that will decide when to release certain aromas. The device controller application includes releasing scents based on a timer, text in English subtitles, or input from external software applications. This allows certain applications (such as games) to decide when to release a scent, making it ideal for gaming. The device also supports native connectivity with games developed using a game development asset, developed as part of this project. The project was evaluated by 15 subjects and it was proved to have high accuracy when the scents were released with 1.5 minutes' delay from each other.