Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nanotechnology ; 31(5): 055703, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31618711

RESUMO

A strategy to reduce implant-related infections is the inhibition of the initial bacterial implant colonization by biomaterials containing silver (Ag). The antimicrobial efficacy of such biomaterials can be increased by surface enhancement (nanosilver) or by creating a sacrificial anode system for Ag. Such a system will lead to an electrochemically driven enhanced Ag ion release due to the presence of a more noble metal. Here we combined the enlarged surface of nanoparticles (NP) with a possible sacrificial anode effect for Ag induced by the presence of the electrochemically more noble platinum (Pt) in physical mixtures of Ag NP and Pt NP dispersions. These Ag NP/Pt NP mixtures were compared to the same amounts of pure Ag NP in terms of cell biological responses, i.e. the antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as the viability of human mesenchymal stem cells (hMSC). In addition, Ag NP was analyzed by ultraviolet-visible (UV-vis) spectroscopy, cyclic voltammetry, and atomic absorption spectroscopy. It was found that the dissolution rate of Ag NP was enhanced in the presence of Pt NP within the physical mixture compared to a dispersion of pure Ag NP. Dissolution experiments revealed a fourfold increased Ag ion release from physical mixtures due to enhanced electrochemical activity, which resulted in a significantly increased toxicity towards both bacteria and hMSC. Thus, our results provide evidence for an underlying sacrificial anode mechanism induced by the presence of Pt NP within physical mixtures with Ag NP. Such physical mixtures have a high potential for various applications, for example as antimicrobial implant coatings in the biomedicine or as bactericidal systems for water and surface purification in the technical area.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Platina/química , Prata/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletroquímica , Eletrodos , Humanos , Células-Tronco Mesenquimais , Prata/farmacologia , Solubilidade
2.
Chemistry ; 25(47): 11048-11057, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31140211

RESUMO

Porous particle superstructures of about 15 nm diameter, consisting of ultrasmall nanoparticles of iridium and iridium dioxide, are prepared through the reduction of sodium hexachloridoiridate(+IV) with sodium citrate/sodium borohydride in water. The water-dispersible porous particles contain about 20 wt % poly(N-vinylpyrrolidone) (PVP), which was added for colloidal stabilization. High-resolution transmission electron microscopy confirms the presence of both iridium and iridium dioxide primary particles (1-2 nm) in each porous superstructure. The internal porosity (≈58 vol%) is demonstrated by electron tomography. In situ transmission electron microscopy up to 1000 °C under oxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuum shows that the porous particles undergo sintering and subsequent compaction upon heating, a process that starts at around 250 °C and is completed at around 800 °C. Finally, well-crystalline iridium dioxide is obtained under all four environments. The catalytic activity of the as-prepared porous superstructures in electrochemical water splitting (oxygen evolution reaction; OER) is reduced considerably upon heating owing to sintering of the pores and loss of internal surface area.

3.
Nanotechnology ; 30(30): 305101, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30959494

RESUMO

Bimetallic alloyed silver-platinum nanoparticles (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10 in steps of 20 mol% were synthesized. The biological effects of AgPt NP, including cellular uptake, cell viability, osteogenic differentiation and osteoclastogenesis as well as the antimicrobial activity towards Staphylococcus aureus and Escherichia coli were analyzed in comparison to pure Ag NP and pure Pt NP. The uptake of NP into human mesenchymal stem cells was confirmed by cross-sectional focused-ion beam preparation and observation by scanning and transmission electron microscopy in combination with energy-dispersive x-ray analysis. Lower cytotoxicity and antimicrobial activity were observed for AgPt NP compared to pure Ag NP. Thus, an enhanced Ag ion release due to a possible sacrificial anode effect was not achieved. Nevertheless, a Ag content of at least 50 mol% was sufficient to induce bactericidal effects against both Staphylococcus aureus and Escherichia coli. In addition, a Pt-related (≥50 mol% Pt) osteo-promotive activity on human mesenchymal stem cells was observed by enhanced cell calcification and alkaline phosphatase activity. In contrast, the osteoclastogenesis of rat primary precursor osteoclasts was inhibited. In summary, these results demonstrate a combinatory osteo-promotive and antimicrobial activity of bimetallic Ag50Pt50 NP.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas , Osteogênese/efeitos dos fármacos , Platina/farmacologia , Prata/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/química , Platina/química , Prata/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
4.
J Mol Cell Cardiol ; 115: 82-93, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274344

RESUMO

AIMS: Calcium phosphate (CaP) particle deposits are found in several inflammatory diseases including atherosclerosis and osteoarthritis. CaP, and other forms of crystals and particles, can promote inflammasome formation in macrophages leading to caspase-1 activation and secretion of mature interleukin-1ß (IL-1ß). Given the close association of small CaP particles with vascular smooth muscle cells (VSMCs) in atherosclerotic fibrous caps, we aimed to determine if CaP particles affected pro-inflammatory signalling in human VSMCs. METHODS AND RESULTS: Using ELISA to measure IL-1ß release from VSMCs, we demonstrated that CaP particles stimulated IL-1ß release from proliferating and senescent human VSMCs, but with substantially greater IL-1ß release from senescent cells; this required caspase-1 activity but not LPS-priming of cells. Potential inflammasome agonists including ATP, nigericin and monosodium urate crystals did not stimulate IL-1ß release from VSMCs. Western blot analysis demonstrated that CaP particles induced rapid activation of spleen tyrosine kinase (SYK) (increased phospho-Y525/526). The SYK inhibitor R406 reduced IL-1ß release and caspase-1 activation in CaP particle-treated VSMCs, indicating that SYK activation occurs upstream of and is required for caspase-1 activation. In addition, IL-1ß and caspase-1 colocalised in intracellular endosome-like vesicles and we detected IL-1ß in exosomes isolated from VSMC media. Furthermore, CaP particle treatment stimulated exosome secretion by VSMCs in a SYK-dependent manner, while the exosome-release inhibitor spiroepoxide reduced IL-1ß release. CONCLUSIONS: CaP particles stimulate SYK and caspase-1 activation in VSMCs, leading to the release of IL-1ß, at least in part via exosomes. These novel findings in human VSMCs highlight the pro-inflammatory and pro-calcific potential of microcalcification.


Assuntos
Fosfatos de Cálcio/farmacologia , Exossomos/metabolismo , Interleucina-1beta/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Quinase Syk/metabolismo , Adulto , Caspase 1/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Feminino , Humanos , Inflamassomos/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Adulto Jovem
5.
Nanoscale Adv ; 2(1): 225-238, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36133991

RESUMO

We present a study on the formation of silver (Ag) and bimetallic silver-gold (AgAu) nanoparticles monitored by in situ SAXS as well as by ex situ TEM, XRD and UV-vis analysis in a flow reactor at controlled reaction temperature. The formation mechanism of the nanoparticles is derived from the structural parameters obtained from the experimental data. The evolution of the average particle size of pure and alloyed nanoparticles shows that the particle growth occurs initially by a coalescence mechanism. The later growth of pure silver nanoparticles is well described by Ostwald ripening and for the alloyed nanoparticles by a process with a significantly slower growth rate. Additionally, the SAXS data of pure silver nanoparticles revealed two major populations of nanoparticles, the first one with a continuous crystal growth to a saturation plateau, and the second one probably with a continuous emergence of small new crystals. The particle sizes obtained by SAXS agree well with the results from transmission electron microscopy and X-ray diffraction. The present study demonstrates the capability of an in situ investigation of synthesis processes using a laboratory based SAXS instrument. Online monitoring of the synthesis permitted a detailed investigation of the structural evolution of the system.

6.
Beilstein J Nanotechnol ; 9: 2763-2774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498649

RESUMO

For a comparative cytotoxicity study, nanoparticles of the noble metals Rh, Pd, Ag, Pt, and Au (spherical, average diameter 4 to 8 nm) were prepared by reduction in water and colloidally stabilized with poly(N-vinyl pyrrolidone) (PVP). Thus, their shape, size, and surface functionalization were all the same. Size and morphology of the nanoparticles were determined by dynamic light scattering (DLS), analytical disc centrifugation (differential centrifugal sedimentation, DCS), and high-resolution transmission electron microscopy (HRTEM). Cell-biological experiments were performed to determine the effect of particle exposure on the viability of human mesenchymal stem cells (hMSCs). Except for silver, no adverse effect of any of the metal nanoparticles was observed for concentrations up to 50 ppm (50 mg L-1) incubated for 24 h, indicating that noble metal nanoparticles (rhodium, palladium, platinum, gold) that do not release ions are not cytotoxic under these conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA