RESUMO
The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways <2 mm in diameter. Shortly thereafter, Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis.
Assuntos
Obstrução das Vias Respiratórias/complicações , Diagnóstico Precoce , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/complicações , Animais , Humanos , Tomografia Computadorizada por Raios X/métodosRESUMO
Rationale: Emerging data demonstrate that the smallest conducting airways, terminal bronchioles, are the early site of tissue destruction in chronic obstructive pulmonary disease (COPD) and are reduced by as much as 41% by the time someone is diagnosed with mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1) COPD. Objectives: To develop a single-cell atlas that describes the structural, cellular, and extracellular matrix alterations underlying terminal bronchiole loss in COPD. Methods: This cross-sectional study of 262 lung samples derived from 34 ex-smokers with normal lung function (n = 10) or GOLD stage 1 (n = 10), stage 2 (n = 8), or stage 4 (n = 6) COPD was performed to assess the morphology, extracellular matrix, single-cell atlas, and genes associated with terminal bronchiole reduction using stereology, micro-computed tomography, nonlinear optical microscopy, imaging mass spectrometry, and transcriptomics. Measurements and Main Results: The lumen area of terminal bronchioles progressively narrows with COPD severity as a result of the loss of elastin fibers within alveolar attachments, which was observed before microscopic emphysematous tissue destruction in GOLD stage 1 and 2 COPD. The single-cell atlas of terminal bronchioles in COPD demonstrated M1-like macrophages and neutrophils located within alveolar attachments and associated with the pathobiology of elastin fiber loss, whereas adaptive immune cells (naive, CD4, and CD8 T cells, and B cells) are associated with terminal bronchiole wall remodeling. Terminal bronchiole pathology was associated with the upregulation of genes involved in innate and adaptive immune responses, the interferon response, and the degranulation of neutrophils. Conclusions: This comprehensive single-cell atlas highlights terminal bronchiole alveolar attachments as the initial site of tissue destruction in centrilobular emphysema and an attractive target for disease modification.
Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Transversais , Microtomografia por Raio-X , Elastina , Pulmão , Asma/complicaçõesRESUMO
Lung resistance (RL) is determined by airway and parenchymal tissue resistance, as well as the degree of heterogeneity in airway constriction. Deep inspirations (DIs) are known to reverse experimentally induced increase in RL, but the mechanism is not entirely clear. The first step toward understanding the effect of DI is to determine how each of the resistance components is affected by DI. In the present study, we measured RL and apparent airway resistance (RAW, which combines the effects of airway resistance and airway heterogeneity) simultaneously before and after a DI in acetylcholine (ACh)-challenged ex vivo sheep lungs. We found that at normal breathing frequency (0.25 Hz) ACh-challenge led to a doubling of RL, 80.3% of that increase was caused by an increase in RAW; the increase in apparent tissue resistance (RT) was insignificant. 57.7% of the increase in RAW was abolished by a single DI. After subtracting RAW from RL, the remaining RT was mostly independent of ACh-challenge and its reduction after a DI came mostly from the change in the mechanical properties of lung parenchyma. We conclude that at normal breathing frequency, RL in an unchallenged lung is mostly composed of RT, and the increase in RL due to ACh-challenge stems mostly from the increase in RAW and that both RAW and RT can be greatly reduced by a DI, likely due to a reduction in true airway resistance and heterogeneity, as well as parenchymal tissue hysteresis post DI.
Assuntos
Resistência das Vias Respiratórias , Tecido Parenquimatoso , Animais , Inalação , Pulmão , Testes de Função Respiratória , OvinosRESUMO
Lung resistance (RL) and elastance (EL) can be measured during positive or negative pressure ventilation. Whether the different modes of ventilation produce different RL and EL is still being debated. Although negative pressure ventilation (NPV) is more physiological, positive pressure ventilation (PPV) is more commonly used for treating respiratory failure. In the present study, we measured lung volume, airway diameter, and airway volume, as well as RL and EL with PPV and NPV in explanted sheep lungs. We found that lung volume under a static pressure, either positive or negative, was not different. However, RL and EL were significantly higher in NPV at high inflation pressures. Interestingly, diameters of smaller airways (diameters <3.5 mm) and total airway volume were significantly greater at high negative inflation pressures compared with those at high positive inflation pressures. This suggests that NPV is more effective in distending the peripheral airways, likely due to the fact that negative pressure is applied through the pleural membrane and reaches the central airways via the peripheral airways, whereas positive pressure is applied in the opposite direction. More distension of lung periphery could explain why RL is higher in NPV (vs. PPV), because the peripheral parenchyma is a major source of tissue resistance, which is a part of the RL that increases with pressure. This explanation is consistent with the finding that during high frequency ventilation (>1 Hz, where RL reflects airway resistance more than tissue resistance), the difference in RL between NPV and PPV disappeared.
Assuntos
Resistência das Vias Respiratórias , Pulmão , Resistência das Vias Respiratórias/fisiologia , Animais , Pulmão/fisiologia , Respiração com Pressão Positiva , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , Fenômenos Fisiológicos Respiratórios , OvinosRESUMO
Rationale: To improve disease outcomes in idiopathic pulmonary fibrosis (IPF), it is essential to understand its early pathophysiology so that it can be targeted therapeutically. Objectives: Perform three-dimensional assessment of the IPF lung microstructure using stereology and multiresolution computed tomography (CT) imaging. Methods: Explanted lungs from patients with IPF (n = 8) and donor control subjects (n = 8) were inflated with air and frozen. CT scans were used to assess large airways. Unbiased, systematic uniform random samples (n = 8/lung) were scanned with microCT for stereological assessment of small airways (count number, and measure airway wall and lumen area) and parenchymal fibrosis (volume fraction of tissue, alveolar surface area, and septal wall thickness). Measurements and Main Results: The total number of airways on clinical CT was greater in IPF lungs than control lungs (P < 0.01), owing to an increase in the wall (P < 0.05) and lumen area (P < 0.05) resulting in more visible airways with a lumen larger than 2 mm. In IPF tissue samples without microscopic fibrosis, assessed by the volume fraction of tissue using microCT, there was a reduction in the number of the terminal (P < 0.01) and transitional (P < 0.001) bronchioles, and an increase in terminal bronchiole wall area (P < 0.001) compared with control lungs. In IPF tissue samples with microscopic parenchymal fibrosis, terminal bronchioles had increased airway wall thickness (P < 0.05) and dilated airway lumens (P < 0.001) leading to honeycomb cyst formations. Conclusions: This study has important implications for the current thinking on how the lung tissue is remodeled in IPF and highlights small airways as a potential target to modify IPF outcomes.
Assuntos
Bronquíolos/diagnóstico por imagem , Bronquíolos/fisiopatologia , Diagnóstico Precoce , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Microtomografia por Raio-X/métodos , Idoso , Feminino , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Masculino , Pessoa de Meia-IdadeRESUMO
Deep inspiration (DI)-induced bronchodilation is the first line of defense against bronchoconstriction in healthy subjects. A hallmark of asthma is the lack of this beneficial effect of DI. The mechanism underlying the bronchodilatory effect of DI is not clear. Understanding the mechanism will help us unravel the mystery of asthma pathophysiology. It has been postulated that straining airway smooth muscle (ASM) during a DI could lead to bronchodilation and bronchoprotection. The hypothesis is currently under debate, and a central question is whether ASM is sufficiently stretched during a DI for its contractility to be compromised. Besides bronchoconstriction, another contributor to lung resistance is airway heterogeneity. The present study examines changes in airway diameter and heterogeneity at different lung volumes. Freshly explanted sheep lungs were used in plethysmographic measurements of lung resistance and elastance at different lung volumes, whereas the airway dimensions were measured by computed tomography (CT). The change in airway diameter informed by CT measurements was applied to isolated airway ring preparations to determine the strain-induced loss of ASM contractility. We found that changing the transpulmonary pressure from 5 to 30 cmH2O led to a 51% increase in lung volume, accompanied by a 46% increase in the airway diameter with no change in airway heterogeneity. When comparable airway strains measured in the whole lung were applied to isolated airway rings in either relaxed or contracted state, a significant loss of ASM contractility was observed, suggesting that DI-induced bronchodilation and bronchoprotection can result from strain-induced loss of ASM contractility.
Assuntos
Resistência das Vias Respiratórias/fisiologia , Brônquios/fisiopatologia , Broncoconstrição/fisiologia , Inalação/fisiologia , Medidas de Volume Pulmonar , Animais , Asma/fisiopatologia , Pulmão , Músculo Liso/metabolismo , Testes de Função Respiratória , Ovinos , Tomografia Computadorizada por Raios XRESUMO
Rationale: Although centrilobular emphysema (CLE) and paraseptal emphysema (PSE) are commonly identified on multidetector computed tomography (MDCT), little is known about the pathology associated with PSE compared with that of CLE.Objectives: To assess the pathological differences between PSE and CLE in chronic obstructive pulmonary disease (COPD).Methods: Air-inflated frozen lung specimens (n = 6) obtained from patients with severe COPD treated by lung transplantation were scanned with MDCT. Frozen tissue cores were taken from central (n = 8) and peripheral (n = 8) regions of each lung, scanned with micro-computed tomography (microCT), and processed for histology. The core locations were registered to the MDCT, and a percentage of PSE or CLE was assigned by radiologists to each of the regions. MicroCT scans were used to measure number and structural change of terminal bronchioles. Furthermore, microCT-based volume fractions of CLE and PSE allowed classifying cores into mild emphysema, CLE-dominant, and PSE-dominant.Measurements and Main Results: The percentages of PSE measured on MDCT and microCT were positively associated (P = 0.015). The number of terminal bronchioles per milliliter of lung and cross-sectional lumen area were significantly lower and wall area percentage was significantly higher in CLE-dominant regions compared with mild emphysema and PSE-dominant regions (all P < 0.05), whereas no difference was found between PSE-dominant and mild emphysema samples (all P > 0.5). Immunohistochemistry showed significantly higher infiltration of neutrophils (P = 0.002), but not of macrophages, CD4, CD8, or B cells, in PSE compared with CLE regions.Conclusions: The terminal bronchioles are relatively preserved, whereas neutrophilic inflammation is increased in PSE-dominant regions compared with CLE-dominant regions in patients with COPD.
Assuntos
Bronquíolos/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/fisiopatologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Causal genes of chronic obstructive pulmonary disease (COPD) remain elusive. The current study aims at integrating genome-wide association studies (GWAS) and lung expression quantitative trait loci (eQTL) data to map COPD candidate causal genes and gain biological insights into the recently discovered COPD susceptibility loci. Two complementary genomic datasets on COPD were studied. First, the lung eQTL dataset which included whole-genome gene expression and genotyping data from 1038 individuals. Second, the largest COPD GWAS to date from the International COPD Genetics Consortium (ICGC) with 13 710 cases and 38 062 controls. Methods that integrated GWAS with eQTL signals including transcriptome-wide association study (TWAS), colocalization and Mendelian randomization-based (SMR) approaches were used to map causality genes, i.e. genes with the strongest evidence of being the functional effector at specific loci. These methods were applied at the genome-wide level and at COPD risk loci derived from the GWAS literature. Replication was performed using lung data from GTEx. We collated 129 non-overlapping risk loci for COPD from the GWAS literature. At the genome-wide scale, 12 new COPD candidate genes/loci were revealed and six replicated in GTEx including CAMK2A, DMPK, MYO15A, TNFRSF10A, BTN3A2 and TRBV30. In addition, we mapped candidate causal genes for 60 out of the 129 GWAS-nominated loci and 23 of them were replicated in GTEx. Mapping candidate causal genes in lung tissue represents an important contribution to the genetics of COPD, enriches our biological interpretation of GWAS findings, and brings us closer to clinical translation of genetic associations.
Assuntos
Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/genética , Transcriptoma/genética , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Genômica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Locos de Características Quantitativas/genéticaRESUMO
Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is substantially influenced by genetic factors. Alpha-1 antitrypsin deficiency demonstrates that rare coding variants of large effect can influence COPD susceptibility. To identify additional rare coding variants in patients with severe COPD, we conducted whole exome sequencing analysis in 2543 subjects from two family-based studies (Boston Early-Onset COPD Study and International COPD Genetics Network) and one case-control study (COPDGene). Applying a gene-based segregation test in the family-based data, we identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P-value < 2x10-6), but were unable to find similar variants in the case-control study. In single-variant, gene-based and pathway association analyses, we were unable to find significant findings that replicated or were significant in meta-analysis. However, we found that the top results in the two datasets were in proximity to each other in the protein-protein interaction network (P-value = 0.014), suggesting enrichment of these results for similar biological processes. A network of these association results and their neighbors was significantly enriched in the transforming growth factor beta-receptor binding and cilia-related pathways. Finally, in a more detailed examination of candidate genes, we identified individuals with putative high-risk variants, including patients harboring homozygous mutations in genes associated with cutis laxa and Niemann-Pick Disease Type C. Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of statistical power and functional annotation, and highlight the potential of network analysis to gain insight into genetic association studies.
Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Adulto JovemRESUMO
Patients who have chronic obstructive pulmonary disease (COPD) and bronchial asthma (BA) share symptoms such as, dyspnoea, cough and wheeze. Differentiating these diseases in the ambulatory setting can be challenging especially in older adult smokers who are being treated with a variety of medications. The objective of this study was to test the value of adding a maximal inspiratory manoeuvre to basic spirometry to differentiate COPD and BA. One hundred forty-three COPD patients and 142 BA patients had measurements of maximal inspiratory and expiratory flow during routine spirometry. Parameters from these tests were used to assess diagnostic accuracy using receiver-operating characteristic (ROC) analyses followed by logistic regression. The association of two independent parameters were analyzed using linear regression analyses. Results show that forced expiratory volume in one second/forced vital capacity (FEV1/FVC%) <62.4 was the best independent predictor to diagnose COPD. The combination of FEV1/FVC% <62.4 and the ratio of peak inspiratory flow/maximal expiratory flow at 50% FVC (PIF/MEF50) >3.06 significantly predicted COPD. Post-test probability for prediction of COPD was 82.0% when patients had both parameters. When asthmatic patients with a smoking history were compared with COPD patients, FEV1/FVC% <63.4 and PIF/MEF50 >3.29 were both independent predictors of COPD. The post-test probability for COPD was 94.4% when patients had both parameters. The association between FEV1/FVC% and PIF/MEF50 was significantly different between COPD and BA. In conclusion, the addition of the maximal inspiratory effort to routine pulmonary function measurements provides a simple test to help differentiate COPD and BA.
Assuntos
Asma/diagnóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Espirometria/métodos , Adulto , Idoso , Asma/fisiopatologia , Feminino , Volume Expiratório Forçado , Humanos , Inalação , Masculino , Fluxo Expiratório Máximo , Curvas de Fluxo-Volume Expiratório Máximo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ventilação Pulmonar , Capacidade VitalRESUMO
The cyclic interaction between myosin crossbridges and actin filaments underlies smooth muscle contraction. Phosphorylation of the 20-kDa myosin light chain (MLC20) is a crucial step in activating the crossbridge cycle. Our current understanding of smooth muscle contraction is based on observed correlations among MLC20 phosphorylation, maximal shortening velocity (Vmax), and isometric force over the time course of contraction. However, during contraction there are changes in the extent of phosphorylation of many additional proteins as well as changes in activation of enzymes associated with the signaling pathways. As a consequence, the mechanical manifestation of muscle contraction is likely to change with time. To simplify the study of these relationships, we measured the mechanical properties of airway smooth muscle at different levels of MLC20 phosphorylation at a fixed time during contraction. A simple correlation emerged when time-dependent variables were fixed. MLC20 phosphorylation was found to be directly and linearly correlated with the active stress, stiffness, and power of the muscle; the observed weak dependence of Vmax on MLC20 phosphorylation could be explained by the presence of an internal load in the muscle preparation. These results can be entirely explained by the Huxley crossbridge model. We conclude that when the influence of time-dependent events during contraction is held constant, the basic crossbridge mechanism in smooth muscle is the same as that in striated muscle.
Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Liso Vascular/fisiologia , Cadeias Leves de Miosina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/fisiologia , Animais , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Cadeias Leves de Miosina/efeitos dos fármacos , Fosforilação , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , OvinosRESUMO
Smooth muscle is able to function over a much broader length range than striated muscle. The ability to maintain contractility after a large length change is thought to be due to an adaptive process involving restructuring of the contractile apparatus to maximize overlap between the contractile filaments. The molecular mechanism for the length-adaptive behavior is largely unknown. In smooth muscle adapted to different lengths we quantified myosin monomers, basal and activation-induced myosin light chain (MLC) phosphorylation, shortening velocity, power output and active force. The muscle was able to generate a constant maximal force over a two fold length range when it was allowed to go through isometric contraction/relaxation cycles after each length change (length adaptation). In the relaxed state, myosin monomer concentration and basal MLC phosphorylation decreased linearly, while in the activated state activation-induced MLC phosphorylation and shortening velocity/power output increased linearly with muscle length. The results suggest that recruitment of myosin monomers and oligomers into the actin filament lattice (where they form force-generating filaments) occurs during muscle adaptation to longer length, with the opposite occurring during adaptation to shorter length.
Assuntos
Contração Muscular/fisiologia , Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Animais , Músculo Liso/citologia , Fosforilação/fisiologia , OvinosRESUMO
Inhaled corticosteroids (ICS) are widely prescribed for patients with chronic obstructive pulmonary disease (COPD), yet have variable outcomes and adverse reactions, which may be genetically determined. The primary aim of the study was to identify the genetic determinants for forced expiratory volume in 1â s (FEV1) changes related to ICS therapy.In the Lung Health Study (LHS)-2, 1116 COPD patients were randomised to the ICS triamcinolone acetonide (n=559) or placebo (n=557) with spirometry performed every 6â months for 3â years. We performed a pharmacogenomic genome-wide association study for the genotype-by-ICS treatment effect on 3â years of FEV1 changes (estimated as slope) in 802 genotyped LHS-2 participants. Replication was performed in 199 COPD patients randomised to the ICS, fluticasone or placebo.A total of five loci showed genotype-by-ICS interaction at p<5×10-6; of these, single nucleotide polymorphism (SNP) rs111720447 on chromosome 7 was replicated (discovery p=4.8×10-6, replication p=5.9×10-5) with the same direction of interaction effect. ENCODE (Encyclopedia of DNA Elements) data revealed that in glucocorticoid-treated (dexamethasone) A549 alveolar cell line, glucocorticoid receptor binding sites were located near SNP rs111720447. In stratified analyses of LHS-2, genotype at SNP rs111720447 was significantly associated with rate of FEV1 decline in patients taking ICS (C allele ß 56.36â mL·year-1, 95% CI 29.96-82.76â mL·year-1) and in patients who were assigned to placebo, although the relationship was weaker and in the opposite direction to that in the ICS group (C allele ß -27.57â mL·year-1, 95% CI -53.27- -1.87â mL·year-1).The study uncovered genetic factors associated with FEV1 changes related to ICS in COPD patients, which may provide new insight on the potential biology of steroid responsiveness in COPD.
Assuntos
Corticosteroides/uso terapêutico , Volume Expiratório Forçado/efeitos dos fármacos , Farmacogenética , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Células A549 , Administração por Inalação , Corticosteroides/administração & dosagem , Idoso , Progressão da Doença , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Qualidade de VidaRESUMO
BACKGROUND: Airflow obstruction is a hallmark of chronic obstructive pulmonary disease (COPD), and is defined as either the ratio between forced expiratory volume in one second and forced vital capacity (FEV1/FVC) < 70% or < lower limit of normal (LLN). This study aimed to assess the overlap between genome-wide association studies (GWAS) on airflow obstruction using these two definitions in the same population stratified by smoking. METHODS: GWASes were performed in the LifeLines Cohort Study for both airflow obstruction definitions in never-smokers (NS = 5071) and ever-smokers (ES = 4855). The FEV1/FVC < 70% models were adjusted for sex, age, and height; FEV1/FVC < LLN models were not adjusted. Ever-smokers models were additionally adjusted for pack-years and current-smoking. The overlap in significantly associated SNPs between the two definitions and never/ever-smokers was assessed using several p-value thresholds. To quantify the agreement, the Pearson correlation coefficient was calculated between the p-values and ORs. Replication was performed in the Vlagtwedde-Vlaardingen study (NS = 432, ES = 823). The overlapping SNPs with p < 10- 4 were validated in the Vlagtwedde-Vlaardingen and Rotterdam Study cohorts (NS = 1966, ES = 3134) and analysed for expression quantitative trait loci (eQTL) in lung tissue (n = 1087). RESULTS: In the LifeLines cohort, 96% and 93% of the never- and ever-smokers were classified concordantly based on the two definitions. 26 and 29% of the investigated SNPs were overlapping at p < 0.05 in never- and ever-smokers, respectively. At p < 10- 4 the overlap was 4% and 6% respectively, which could be change findings as shown by simulation studies. The effect estimates of the SNPs of the two definitions correlated strongly, but the p-values showed more variation and correlated only moderately. Similar observations were made in the Vlagtwedde-Vlaardingen study. Two overlapping SNPs in never-smokers (NFYC and FABP7) had the same direction of effect in the validation cohorts and the NFYC SNP was an eQTL for NFYC-AS1. NFYC is a transcription factor that binds to several known COPD genes, and FABP7 may be involved in abnormal pulmonary development. CONCLUSIONS: The definition of airflow obstruction and the population under study may be important determinants of which SNPs are associated with airflow obstruction. The genes FABP7 and NFYC(-AS1) could play a role in airflow obstruction in never-smokers specifically.
Assuntos
Fator de Ligação a CCAAT/genética , Proteína 7 de Ligação a Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Homologia de Genes/genética , Predisposição Genética para Doença , Humanos , Modelos Lineares , Modelos Logísticos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Fumar/efeitos adversos , Espirometria , Capacidade Vital , Adulto JovemRESUMO
We relate changes of the airway wall to the response of the intact airway and the whole lung. We address how mechanical conditions and specific structural changes for an airway contribute to hyperresponsiveness resistant to deep inspiration. This review conveys that the origins of hyperresponsiveness do not devolve into an abnormality at single structural level but require examination of the complex interplay of all the parts.
Assuntos
Hiper-Reatividade Brônquica/patologia , Pulmão/patologia , Asma/patologia , Humanos , Inalação/fisiologiaRESUMO
The small conducting airways are the major site of obstruction in chronic obstructive pulmonary disease (COPD). This study examined small airway pathology using a novel combination of multidetector row computed tomography (MDCT), micro-computed tomography (microCT) and histology.Airway branches visible on specimen MDCT were counted and the dimensions of the third- to fifth-generation airways were computed, while the terminal bronchioles (designated TB), preterminal bronchioles (TB-1) and pre-preterminal bronchioles (TB-2) were examined with microCT and histology in eight explanted lungs with end-stage COPD and seven unused donor lungs that served as controls.On MDCT, COPD lungs showed a decrease in the number of 2-2.5â mm diameter airways and the lumen area of fifth-generation airways, while on microCT there was a reduction in the number of terminal bronchioles as well as a decrease in the luminal areas, wall volumes and alveolar attachments to the walls of TB, TB-1 and TB-2 bronchioles. The combination of microCT and histology showed increased B-cell infiltration into the walls of TB-1 and TB-2 bronchioles, and this change was correlated with a reduced number of alveolar attachments in COPD.Small airways disease extends from 2â mm diameter airways to the terminal bronchioles in COPD. Destruction of alveolar attachments may be driven by a B-cell-mediated immune response in the preterminal bronchioles.
Assuntos
Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X , Idoso , Obstrução das Vias Respiratórias/fisiopatologia , Remodelação das Vias Aéreas/fisiologia , Linfócitos B/citologia , Bronquíolos/diagnóstico por imagem , Bronquíolos/fisiopatologia , Estudos de Casos e Controles , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Transplante de Pulmão , Masculino , Pessoa de Meia-Idade , Alvéolos Pulmonares/diagnóstico por imagem , Alvéolos Pulmonares/fisiopatologiaRESUMO
Inadequate DNA repair is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the mechanisms that underlie inadequate DNA repair in COPD are poorly understood. We applied an integrative genomic approach to identify DNA repair genes and pathways associated with COPD severity.We measured the transcriptomic changes of 419 genes involved in DNA repair and DNA damage tolerance that occur with severe COPD in three independent cohorts (n=1129). Differentially expressed genes were confirmed with RNA sequencing and used for patient clustering. Clinical and genome-wide transcriptomic differences were assessed following cluster identification. We complemented this analysis by performing gene set enrichment analysis, Z-score and weighted gene correlation network analysis to identify transcriptomic patterns of DNA repair pathways associated with clinical measurements of COPD severity.We found 15 genes involved in DNA repair and DNA damage tolerance to be differentially expressed in severe COPD. K-means clustering of COPD cases based on this 15-gene signature identified three patient clusters with significant differences in clinical characteristics and global transcriptomic profiles. Increasing COPD severity was associated with downregulation of the nucleotide excision repair pathway.Systematic analysis of the lung tissue transcriptome of individuals with severe COPD identified DNA repair responses associated with disease severity that may underlie COPD pathogenesis.
Assuntos
Reparo do DNA/genética , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Transcriptoma , Idoso , Dano ao DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologiaRESUMO
BACKGROUND: Smoking is the principal modifiable environmental risk factor for chronic obstructive pulmonary disease (COPD) which affects 300 million people and is the 3rd leading cause of death worldwide. Most of the genetic studies of smoking have relied on self-reported smoking status which is vulnerable to reporting and recall bias. Using data from the Lung Health Study (LHS), we sought to identify genetic variants associated with quantitative smoking and cessation in individuals with mild to moderate COPD. METHODS: The LHS is a longitudinal multicenter study of mild-to-moderate COPD subjects who were all smokers at recruitment. We performed genome-wide association studies (GWASs) for salivary cotinine (n = 4024), exhaled carbon monoxide (eCO) (n = 2854), cigarettes per day (CPD) (n = 2706) and smoking cessation at year 5 follow-up (n = 717 quitters and 2175 smokers). The GWAS analyses were adjusted for age, gender, and genetic principal components. RESULTS: For cotinine levels, SNPs near UGT2B10 gene achieved genome-wide significance (i.e. P < 5 × 10- 8) with top SNP rs10023464, P = 1.27 × 10- 11. For eCO levels, one significant SNP was identified which mapped to the CHRNA3 gene (rs12914385, P = 2.38 × 10- 8). A borderline region mapping to KCNMA1 gene was associated with smoking cessation (rs207675, P = 5.95 × 10- 8). Of the identified loci, only the CHRNA3/5 locus showed significant associations with lung function but only in heavy smokers. No regions met genome-wide significance for CPD. CONCLUSION: The study demonstrates that using objective measures of smoking such as eCO and/or salivary cotinine can more precisely capture the genetic contribution to multiple aspects of smoking behaviour. The KCNMA1 gene association with smoking cessation may represent a potential therapeutic target and warrants further studies. TRIAL REGISTRATION: The Lung Health Study ClinicalTrials.gov Identifier: NCT00000568 . Date of registration: October 28, 1999.
Assuntos
Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/epidemiologia , Fumar/genética , Adulto , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Fumar/terapia , Abandono do Hábito de Fumar/métodosRESUMO
RATIONALE: Very little is known about airways that are too small to be visible on thoracic multidetector computed tomography but larger than the terminal bronchioles. OBJECTIVES: To examine the structure of preterminal bronchioles located one generation proximal to terminal bronchioles in centrilobular and panlobular emphysema. METHODS: Preterminal bronchioles were identified by backtracking from the terminal bronchioles, and their centerlines were established along the entire length of their lumens. Multiple cross-sectional images perpendicular to the centerline were reconstructed to evaluate the bronchiolar wall and lumen, and the alveolar attachments to the outer airway walls in relation to emphysematous destruction in 28 lung samples from six patients with centrilobular emphysema, 20 lung samples from seven patients with panlobular emphysema associated with alpha-1 antitrypsin deficiency, and 47 samples from seven control (donor) lungs. MEASUREMENTS AND MAIN RESULTS: The preterminal bronchiolar length, wall volume, total volume (wall + lumen), lumen circularity, and number of alveolar attachments were reduced in both centrilobular and panlobular emphysema compared with control lungs. In contrast, thickening of the wall and narrowing of the lumen were more severe and heterogeneous in centrilobular than in panlobular emphysema. The bronchiolar lumen was narrower in the middle than at both ends, and the decreased number of alveolar attachments was associated with increased wall thickness in centrilobular emphysema. CONCLUSIONS: These results provide new information about small airways pathology in centrilobular and panlobular emphysema and show that these changes affect airways that are not visible with thoracic multidetector computed tomography scans but located proximal to the terminal bronchioles in chronic obstructive pulmonary disease.
Assuntos
Bronquíolos/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Enfisema Pulmonar/diagnóstico por imagem , Microtomografia por Raio-X , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Chronic obstructive pulmonary disease is the third leading cause of death worldwide. Gene expression profiling across multiple regions of the same lung identified genes significantly related to emphysema. We sought to determine whether the lung and epithelial expression of 127 emphysema-related genes was also related to lung function in independent cohorts, and whether any of these genes could be used as biomarkers in the peripheral blood of patients with chronic obstructive pulmonary disease. To that end, we examined whether the expression levels of these genes were under genetic control in lung tissue (n = 1,111). We then determined whether the mRNA levels of these genes in lung tissue (n = 727), small airway epithelial cells (n = 238), and peripheral blood (n = 620) were significantly related to lung function measurements. The expression of 63 of the 127 genes (50%) was under genetic control in lung tissue. The lung and epithelial mRNA expression of a subset of the emphysema-associated genes, including ASRGL1, LPHN2, and EDNRB, was strongly associated with lung function. In peripheral blood, the expression of 40 genes was significantly associated with lung function. Twenty-nine of these genes (73%) were also associated with lung function in lung tissue, but with the opposite direction of effect for 24 of the 29 genes, including those involved in hypoxia and B cell-related responses. The integrative genomics approach uncovered a significant overlap of emphysema genes associations with lung function between lung and blood with opposite directions between the two. These results support the use of peripheral blood to detect disease biomarkers.