Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499341

RESUMO

Glucocorticoids are steroids involved in key physiological processes such as development, metabolism, inflammatory and stress responses and are mostly used exogenously as medications to treat various inflammation-based conditions. They act via the glucocorticoid receptor (GR) expressed in most cells. Exogenous glucocorticoids can negatively impact the function of the Leydig cells in the testis, leading to decreased androgen production. However, endogenous glucocorticoids are produced by the adrenal and within the testis, but whether their action on GR in Leydig cells regulates steroidogenesis is unknown. This study aimed to define the role of endogenous GR signalling in adult Leydig cells. We developed and compared two models; an inducible Cre transgene driven by expression of the Cyp17a1 steroidogenic gene (Cyp17-iCre) that depletes GR during development and a viral vector-driven Cre (AAV9-Cre) to deplete GR in adulthood. The delivery of AAV9-Cre ablated GR in adult mouse Leydig cells depleted Leydig cell GR more efficiently than the Cyp17-iCre model. Importantly, adult depletion of GR in Leydig cells caused reduced expression of luteinising hormone receptor (Lhcgr) and of steroidogenic enzymes required for normal androgen production. These findings reveal that Leydig cell GR signalling plays a physiological role in the testis and highlight that a normal balance of glucocorticoid activity in the testis is important for steroidogenesis.


Assuntos
Células Intersticiais do Testículo , Receptores de Glucocorticoides , Camundongos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/genética , Glucocorticoides/metabolismo , Androgênios/metabolismo , Camundongos Knockout , Testículo/metabolismo , Expressão Gênica
2.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645090

RESUMO

During mammalian reproduction, sperm are delivered to the female reproductive tract bathed in a complex medium known as seminal fluid, which plays key roles in signaling to the female reproductive tract and in nourishing sperm for their onwards journey. Along with minor contributions from the prostate and the epididymis, the majority of seminal fluid is produced by a somewhat understudied organ known as the seminal vesicle. Here, we report the first single-cell RNA-seq atlas of the mouse seminal vesicle, generated using tissues obtained from 23 mice of varying ages, exposed to a range of dietary challenges. We define the transcriptome of the secretory cells in this tissue, identifying a relatively homogeneous population of the epithelial cells which are responsible for producing the majority of seminal fluid. We also define the immune cell populations - including large populations of macrophages, dendritic cells, T cells, and NKT cells - which have the potential to play roles in producing various immune mediators present in seminal plasma. Together, our data provide a resource for understanding the composition of an understudied reproductive tissue with potential implications for paternal control of offspring development and metabolism.

3.
Reprod Fertil ; 5(4)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230058

RESUMO

Abstract: Seminal fluid extracellular vesicles (SFEVs) have previously been shown to interact with spermatozoa and influence their fertilisation capacity. Here, we sought to extend these studies by exploring the functional consequences of SFEV interactions with human spermatozoa. SFEVs were isolated from the seminal fluid of normozoospermic donors prior to assessing the kinetics of sperm-SFEV binding in vitro, as well as the effects of these interactions on sperm capacitation, acrosomal exocytosis, and motility profile. Biotin-labelled SFEV proteins were transferred primarily to the flagellum of spermatozoa within minutes of co-incubation, although additional foci of SFEV biotinylated proteins also labelled the mid-piece and head domain. Functional analyses of high-quality spermatozoa collected following liquefaction revealed that SFEVs did not influence sperm motility during incubation at pH 5, yet SFEVs induced subtle increases in total and progressive motility in sperm incubated with SFEVs at pH 7. Additional investigation of sperm motility kinematic parameters revealed that SFEVs significantly decreased beat cross frequency and increased distance straight line, linearity, straightness, straight line velocity, and wobble. SFEVs did not influence sperm capacitation status or the ability of sperm to undergo acrosomal exocytosis. Functional assessment of both high- and low-quality spermatozoa collected prior to liquefaction showed limited SFEV influence, with these vesicles inducing only subtle decreases in beat cross frequency in spermatozoa of both groups. These findings raise the prospect that, aside from subtle effects on sperm motility, the encapsulated SFEV cargo may be destined for physiological targets other than the male germline, notably the female reproductive tract. Lay Summary: A male's influence over the biological processes of pregnancy extends beyond the provision of sperm. Molecular signals present in the ejaculate can influence the likelihood of pregnancy and healthy pregnancy progression, but the identity and function of these signals remain unclear. In this study, we wanted to understand if nano-sized particles present in the male ejaculate, called seminal fluid extracellular vesicles, can assist sperm in traversing the female reproductive tract to access the egg. To explore this, we isolated seminal fluid extracellular vesicles from human semen and incubated them with sperm. Our data showed that seminal fluid extracellular vesicles act to transfer molecular information to sperm, but this resulted in only subtle changes to the movement of sperm.


Assuntos
Vesículas Extracelulares , Sêmen , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides , Humanos , Masculino , Vesículas Extracelulares/metabolismo , Espermatozoides/fisiologia , Espermatozoides/metabolismo , Motilidade dos Espermatozoides/fisiologia , Capacitação Espermática/fisiologia , Sêmen/metabolismo , Sêmen/química , Reação Acrossômica/fisiologia , Glândulas Seminais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA