Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(17): 9216-9222, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284402

RESUMO

Terrestrial photosynthesis is regulated by plant phenology and environmental conditions, both of which experienced substantial changes in recent decades. Unlike early-season photosynthesis, which is mostly driven by temperature or wet-season onset, late-season photosynthesis can be limited by several factors and the underlying mechanisms are less understood. Here, we analyze the temperature and water limitations on the ending date of photosynthesis (EOP), using data from both remote-sensing and flux tower-based measurements. We find a contrasting spatial pattern of temperature and water limitations on EOP. The threshold separating these is determined by the balance between energy availability and soil water supply. This coordinated temperature and moisture regulation can be explained by "law of minimum," i.e., as temperature limitation diminishes, higher soil water is needed to support increased vegetation activity, especially during the late growing season. Models project future warming and drying, especially during late season, both of which should further expand the water-limited regions, causing large variations and potential decreases in photosynthesis.


Assuntos
Clorofila/análise , Fotossíntese/fisiologia , Água/metabolismo , Ciclo do Carbono/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Florestas , Plantas/metabolismo , Imagens de Satélites , Estações do Ano , Solo/química , Luz Solar , Temperatura
2.
Global Biogeochem Cycles ; 36(9): e2021GB007216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36590828

RESUMO

The northern high latitude (NHL, 40°N to 90°N) is where the second peak region of gross primary productivity (GPP) other than the tropics. The summer NHL GPP is about 80% of the tropical peak, but both regions are still highly uncertain (Norton et al. 2019, https://doi.org/10.5194/bg-16-3069-2019). Carbonyl sulfide (OCS) provides an important proxy for photosynthetic carbon uptake. Here we optimize the OCS plant uptake fluxes across the NHL by fitting atmospheric concentration simulation with the GEOS-CHEM global transport model to the aircraft profiles acquired over Alaska during NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (2012-2015). We use the empirical biome-specific linear relationship between OCS plant uptake flux and GPP to derive the six plant uptake OCS fluxes from different GPP data. Such GPP-based fluxes are used to drive the concentration simulations. We evaluate the simulations against the independent observations at two ground sites of Alaska. The optimized OCS fluxes suggest the NHL plant uptake OCS flux of -247 Gg S year-1, about 25% stronger than the ensemble mean of the six GPP-based OCS fluxes. GPP-based OCS fluxes systematically underestimate the peak growing season across the NHL, while a subset of models predict early start of season in Alaska, consistent with previous studies of net ecosystem exchange. The OCS optimized GPP of 34 PgC yr-1 for NHL is also about 25% more than the ensembles mean from six GPP data. Further work is needed to fully understand the environmental and biotic drivers and quantify their rate of photosynthetic carbon uptake in Arctic ecosystems.

3.
Proc Natl Acad Sci U S A ; 116(24): 11640-11645, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138693

RESUMO

Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO2 but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP. Here, we examined the mechanistic relationship between SIF retrieved from a canopy spectrometer system and GPP at a winter-dormant conifer forest, which has little seasonal variation in canopy structure, needle chlorophyll content, and absorbed light. Both SIF and GPP track each other in a consistent, dynamic fashion in response to environmental conditions. SIF and GPP are well correlated (R2 = 0.62-0.92) with an invariant slope over hourly to weekly timescales. Large seasonal variations in SIF yield capture changes in photoprotective pigments and photosystem II operating efficiency associated with winter acclimation, highlighting its unique ability to precisely track the seasonality of photosynthesis. Our results underscore the potential of new satellite-based SIF products (TROPOMI, OCO-2) as proxies for the timing and magnitude of GPP in evergreen forests at an unprecedented spatiotemporal resolution.


Assuntos
Fotossíntese/fisiologia , Ciclo do Carbono/fisiologia , Clorofila/fisiologia , Clima , Ecossistema , Monitoramento Ambiental/métodos , Fluorescência , Florestas , Complexo de Proteína do Fotossistema II/fisiologia , Estações do Ano , Luz Solar
4.
New Phytol ; 225(1): 105-112, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299099

RESUMO

The response of terrestrial carbon uptake to increasing atmospheric [CO2 ], that is the CO2 fertilization effect (CFE), remains a key area of uncertainty in carbon cycle science. Here we provide a perspective on how satellite observations could be better used to understand and constrain CFE. We then highlight data assimilation (DA) as an effective way to reconcile different satellite datasets and systematically constrain carbon uptake trends in Earth System Models. As a proof-of-concept, we show that joint DA of multiple independent satellite datasets reduced model ensemble error by better constraining unobservable processes and variables, including those directly impacted by CFE. DA of multiple satellite datasets offers a powerful technique that could improve understanding of CFE and enable more accurate forecasts of terrestrial carbon uptake.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Conjuntos de Dados como Assunto , Planeta Terra , Modelos Estatísticos , Imagens de Satélites , Astronave
5.
Glob Chang Biol ; 26(2): 682-696, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31596019

RESUMO

Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.


Assuntos
Ecossistema , Fotossíntese , Alaska , Regiões Árticas , Canadá , Ciclo do Carbono , Dióxido de Carbono , Mudança Climática , Estações do Ano
6.
Proc Natl Acad Sci U S A ; 114(21): 5361-5366, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28484001

RESUMO

High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

7.
Proc Natl Acad Sci U S A ; 113(28): 7733-8, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354511

RESUMO

With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.

8.
Glob Chang Biol ; 24(8): 3416-3435, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29688596

RESUMO

The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese , Taiga , Tundra , Alaska , Ciclo do Carbono , Estações do Ano , Solo
9.
Glob Chang Biol ; 20(10): 3103-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24909755

RESUMO

Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr(-1) ) and enhanced GPP in tropical forests (~3.7 Pg C yr(-1) ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.


Assuntos
Clorofila/análise , Clorofila/metabolismo , Clima , Monitoramento Ambiental/métodos , Plantas/metabolismo , Ciclo do Carbono , Europa (Continente) , Fluorescência , Modelos Teóricos , América do Norte , Fotossíntese , Estações do Ano , América do Sul , Astronave , Luz Solar
10.
Sci Total Environ ; 806(Pt 3): 151335, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743818

RESUMO

A fundamental challenge in verifying urban CO2 emissions reductions is estimating the biological influence that can confound emission source attribution across heterogeneous and diverse landscapes. Recent work using atmospheric radiocarbon revealed a substantial seasonal influence of the managed urban biosphere on regional carbon budgets in the Los Angeles megacity, but lacked spatially explicit attribution of the diverse biological influences needed for flux quantification and decision making. New high-resolution maps of land cover (0.6 m) and irrigation (30 m) derived from optical and thermal sensors can simultaneously resolve landscape influences related to vegetation type (tree, grass, shrub), land use, and fragmentation needed to accurately quantify biological influences on CO2 exchange in complex urban environments. We integrate these maps with the Urban Vegetation Photosynthesis and Respiration Model (UrbanVPRM) to quantify spatial and seasonal variability in gross primary production (GPP) across urban and non-urban regions of Southern California Air Basin (SoCAB). Results show that land use and landscape fragmentation have a significant influence on urban GPP and canopy temperature within the water-limited Mediterranean SoCAB climate. Irrigated vegetation accounts for 31% of urban GPP, driven by turfgrass, and is more productive (1.7 vs 0.9 µmol m-2 s-1) and cooler (2.2 ± 0.5 K) than non-irrigated vegetation during hot dry summer months. Fragmented landscapes, representing mostly vegetated urban greenspaces, account for 50% of urban GPP. Cooling from irrigation alleviates strong warming along greenspace edges within 100 m of impervious surfaces, and increases GPP by a factor of two, compared to non-irrigated edges. Finally, we note that non-irrigated shrubs are typically more productive than non-irrigated trees and grass, and equally productive as irrigated vegetation. These results imply a potential water savings benefit of urban shrubs, but more work is needed to understand carbon vs water usage tradeoffs of managed vs unmanaged vegetation.


Assuntos
Carbono , Temperatura Alta , Ciclo do Carbono , Clima , Tecnologia de Sensoriamento Remoto
11.
J Adv Model Earth Syst ; 14(3): e2021MS002747, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865620

RESUMO

Recent advances in satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf-level to canopy-level is usually not well-represented. Here, we incorporate the simulation of far-red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf-level fluorescence yield was simulated by a parametric simplification of the Soil Canopy-Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf-level to top-of-canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R 2 > 0.91, root-mean-square error <0.19 W⋅m-2⋅sr-1⋅µm-1), and captured the day-to-day variation of tower-measured SIF at temperate forest sites (R 2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite-observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.

12.
J Adv Model Earth Syst ; 14(2): e2021MS002676, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35860620

RESUMO

Model Intercomparison Projects (MIPs) are fundamental to our understanding of how the land surface responds to changes in climate. However, MIPs are challenging to conduct, requiring the organization of multiple, decentralized modeling teams throughout the world running common protocols. We explored centralizing these models on a single supercomputing system. We ran nine offline terrestrial biosphere models through the Terrestrial Biosphere Model Farm: CABLE, CENTURY, HyLand, ISAM, JULES, LPJ-GUESS, ORCHIDEE, SiB-3, and SiB-CASA. All models were wrapped in a software framework driven with common forcing data, spin-up, and run protocols specified by the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) for years 1901-2100. We ran more than a dozen model experiments. We identify three major benefits and three major challenges. The benefits include: (a) processing multiple models through a MIP is relatively straightforward, (b) MIP protocols are run consistently across models, which may reduce some model output variability, and (c) unique multimodel experiments can provide novel output for analysis. The challenges are: (a) technological demand is large, particularly for data and output storage and transfer; (b) model versions lag those from the core model development teams; and (c) there is still a need for intellectual input from the core model development teams for insight into model results. A merger with the open-source, cloud-based Predictive Ecosystem Analyzer (PEcAn) ecoinformatics system may be a path forward to overcoming these challenges.

13.
Nat Commun ; 13(1): 5626, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163194

RESUMO

Warming of northern high latitude regions (NHL, > 50 °N) has increased both photosynthesis and respiration which results in considerable uncertainty regarding the net carbon dioxide (CO2) balance of NHL ecosystems. Using estimates constrained from atmospheric observations from 1980 to 2017, we find that the increasing trends of net CO2 uptake in the early-growing season are of similar magnitude across the tree cover gradient in the NHL. However, the trend of respiratory CO2 loss during late-growing season increases significantly with increasing tree cover, offsetting a larger fraction of photosynthetic CO2 uptake, and thus resulting in a slower rate of increasing annual net CO2 uptake in areas with higher tree cover, especially in central and southern boreal forest regions. The magnitude of this seasonal compensation effect explains the difference in net CO2 uptake trends along the NHL vegetation- permafrost gradient. Such seasonal compensation dynamics are not captured by dynamic global vegetation models, which simulate weaker respiration control on carbon exchange during the late-growing season, and thus calls into question projections of increasing net CO2 uptake as high latitude ecosystems respond to warming climate conditions.


Assuntos
Dióxido de Carbono , Pergelissolo , Ciclo do Carbono , Ecossistema , Estações do Ano
14.
Nat Plants ; 7(7): 877-887, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211130

RESUMO

Diurnal cycling of plant carbon uptake and water use, and their responses to water and heat stresses, provide direct insight into assessing ecosystem productivity, agricultural production and management practices, carbon and water cycles, and feedbacks to the climate. Temperature, light, atmospheric water demand, soil moisture and leaf water potential vary over the course of the day, leading to diurnal variations in stomatal conductance, photosynthesis and transpiration. Earth observations from polar-orbiting satellites are incapable of studying these diurnal variations. Here, we review the emerging satellite observations that have the potential for studying how plant functioning and ecosystem processes vary over the course of the diurnal cycle. The recently launched ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) and Orbiting Carbon Observatory-3 (OCO-3) provide land surface temperature, evapotranspiration (ET), gross primary production (GPP) and solar-induced chlorophyll fluorescence data at different times of day. New generation operational geostationary satellites such as Himawari-8 and the GOES-R series can provide continuous, high-frequency data of land surface temperature, solar radiation, GPP and ET. Future satellite missions such as GeoCarb, TEMPO and Sentinel-4 are also planned to have diurnal sampling capability of solar-induced chlorophyll fluorescence. We explore the unprecedented opportunities for characterizing and understanding how GPP, ET and water use efficiency vary over the course of the day in response to temperature and water stresses, and management practices. We also envision that these emerging observations will revolutionize studies of plant functioning and ecosystem processes in the context of climate change and that these observations and findings can inform agricultural and forest management and lead to improvements in Earth system models and climate projections.


Assuntos
Ritmo Circadiano/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Desenvolvimento Vegetal/fisiologia , Tecnologia de Sensoriamento Remoto
15.
Sci Rep ; 9(1): 2758, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808971

RESUMO

The ability to accurately predict ecosystem drought response and recovery is necessary to produce reliable forecasts of land carbon uptake and future climate. Using a suite of models from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we assessed modeled net primary productivity (NPP) response to, and recovery from, drought events against a benchmark derived from tree ring observations between 1948 and 2008 across forested regions of the US and Europe. We find short lag times (0-6 months) between climate anomalies and modeled NPP response. Although models accurately simulate the direction of drought legacy effects (i.e. NPP decreases), projected effects are approximately four times shorter and four times weaker than observations suggest. This discrepancy between observed and simulated vegetation recovery from drought reveals a potential critical model deficiency. Since productivity is a crucial component of the land carbon balance, models that underestimate drought recovery time could overestimate predictions of future land carbon sink strength and, consequently, underestimate forecasts of atmospheric CO2.


Assuntos
Dióxido de Carbono/metabolismo , Secas , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Ciclo do Carbono , Mudança Climática
16.
Sci Adv ; 4(7): eaao1167, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30009255

RESUMO

The contemporary Arctic carbon balance is uncertain, and the potential for a permafrost carbon feedback of anywhere from 50 to 200 petagrams of carbon (Schuur et al., 2015) compromises accurate 21st-century global climate system projections. The 42-year record of atmospheric CO2 measurements at Barrow, Alaska (71.29 N, 156.79 W), reveals significant trends in regional land-surface CO2 anomalies (ΔCO2), indicating long-term changes in seasonal carbon uptake and respiration. Using a carbon balance model constrained by ΔCO2, we find a 13.4% decrease in mean carbon residence time (50% confidence range = 9.2 to 17.6%) in North Slope tundra ecosystems during the past four decades, suggesting a transition toward a boreal carbon cycling regime. Temperature dependencies of respiration and carbon uptake suggest that increases in cold season Arctic labile carbon release will likely continue to exceed increases in net growing season carbon uptake under continued warming trends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA