RESUMO
Breast cancer (BC) is the most common tumor and the second cause for cancer-related death in women worldwide, although combined treatments are well-established interventions. Several effects seem to be responsible for poor outcomes in advanced or triple-negative BC patients. Focusing on the interaction of ionizing radiation with tumor and normal tissues, the role of cytokine modulation as a surrogate of immunomodulation must still be explored. In this work, we carried out an overview of studies published in the last five years involving the cytokine profile in BC patients undergoing radiotherapy. The goal of this review was to evaluate the profile and modulation of major cytokines and interleukins as potential biomarkers of survival, treatment response, and toxicity in BC patient undergoing radiotherapy. Out of 47 retrieved papers selected using PubMed search, 15 fulfilled the inclusion criteria. Different studies reported that the modulation of specific cytokines was time- and treatment-dependent. Radiotherapy (RT) induces the modulation of inflammatory cytokines up to 6 months for most of the analyzed cytokines, which in some cases can persist up to several years post-treatment. The role of specific cytokines as prognostic and predictive of radiotherapy outcome is critically discussed.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Citocinas/metabolismo , Biomarcadores , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Terapia Combinada , Feminino , Humanos , Imunomodulação , Resultado do TratamentoRESUMO
A radiological or nuclear attack could involve such a large number of subjects as to overwhelm the emergency facilities in charge. Resources should therefore be focused on those subjects needing immediate medical attention and care. In such a scenario, for the triage management by first responders, it is necessary to count on efficient biological dosimetry tools capable of early detection of the absorbed dose. At present the validated assays for measuring the absorbed dose are dicentric chromosomes and micronuclei counts, which require more than 2-3 days to obtain results. To overcome this limitation the NATO SPS Programme funded an Italian-Egyptian collaborative project aimed at validating a fast, accurate and feasible tool for assessing the absorbed dose early after radiation exposure. Biomarkers as complete blood cell counts, DNA breaks and radio-inducible proteins were investigated on blood samples collected before and 3 h after the first fraction of radiotherapy in patients treated in specific target areas with doses/fraction of about: 2, 3.5 or > 5 Gy and compared with the reference micronuclei count. Based on univariate and multivariate multiple linear regression correlation, our results identify five early biomarkers potentially useful for detecting the extent of the absorbed dose 3 h after the exposure.
Assuntos
Biomarcadores/metabolismo , Radiação Ionizante , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Biomarcadores/sangue , Contagem de Células Sanguíneas , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Exposição à Radiação , RadiometriaRESUMO
Sperm DNA integrity is essential for the accurate transmission of paternal genetic information. Various stages of spermatogenesis are characterized by large differences in radiosensitivity. Differentiating spermatogonia are susceptible to radiation-induced cell killing, but some of them can repair DNA damage and progress through differentiation. In this study, we applied the neutral comet assay, immunodetection of phosphorylated H2AX (γ-H2AX) and the Sperm Chromatin Structure Assay (SCSA) to detect DNA strand breaks in testicular cells and spermatozoa at different times following in vivo X-ray irradiation. Radiation produced DNA strand breaks in testicular cells that were repaired within the first few hours after exposure. Spermatozoa were resistant to the induction of DNA damage, but non-targeted DNA lesions were detected in spermatozoa derived from surviving irradiated spermatogonia. These lesions formed while round spermatids started to elongate within the testicular seminiferous tubules. The transcription of pro-apoptotic genes at this time was also enhanced, suggesting that an apoptotic-like process was involved in DNA break production. Our results suggest that proliferating spermatogonia retain a memory of the radiation insult that is recognized at a later developmental stage and activates a process leading to DNA fragmentation.
Assuntos
Dano ao DNA , Mutação/efeitos da radiação , Espermatozoides/efeitos da radiação , Raios X/efeitos adversos , Animais , Reparo do DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Mutagenicidade , Espermatogênese/efeitos da radiação , Testículo/efeitos da radiaçãoRESUMO
We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol.