Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 140(7): 1109-1120, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33944996

RESUMO

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


Assuntos
DNA Helicases/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Domínio Catalítico , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/genética , Feminino , Genes Dominantes , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Adulto Jovem
2.
Clin Genet ; 100(2): 187-200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33955014

RESUMO

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Assuntos
Anormalidades Múltiplas/etiologia , Doenças do Desenvolvimento Ósseo/etiologia , Deficiência Intelectual/etiologia , Proteínas Repressoras/genética , Anormalidades Dentárias/etiologia , Anormalidades Múltiplas/genética , Adolescente , Doenças do Desenvolvimento Ósseo/genética , Criança , Pré-Escolar , Face/anormalidades , Fácies , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Anormalidades Dentárias/genética , Adulto Jovem
3.
Am J Med Genet A ; 185(10): 2863-2872, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34050707

RESUMO

The DEAD/DEAH box RNA helicases are a superfamily of proteins involved in the processing and transportation of RNA within the cell. A growing literature supports this family of proteins as contributing to various types of human disorders from neurodevelopmental disorders to syndromes with multiple congenital anomalies. This article presents a cohort of nine unrelated individuals with de novo missense alterations in DDX23 (Dead-Box Helicase 23). The gene is ubiquitously expressed and functions in RNA splicing, maintenance of genome stability, and the sensing of double-stranded RNA. Our cohort of patients, gathered through GeneMatcher, exhibited features including tone abnormalities, global developmental delay, facial dysmorphism, autism spectrum disorder, and seizures. Additionally, there were a variety of other findings in the skeletal, renal, ocular, and cardiac systems. The missense alterations all occurred within a highly conserved RecA-like domain of the protein, and are located within or proximal to the DEAD box sequence. The individuals presented in this article provide evidence of a syndrome related to alterations in DDX23 characterized predominantly by atypical neurodevelopment.


Assuntos
Transtorno do Espectro Autista/genética , RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Instabilidade Genômica/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Splicing de RNA/genética , RNA de Cadeia Dupla/genética , Convulsões/complicações , Convulsões/genética , Convulsões/fisiopatologia
4.
Clin Genet ; 97(1): 3-11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721174

RESUMO

In recent years, many genes have been associated with chromatinopathies classified as "Cornelia de Lange Syndrome-like." It is known that the phenotype of these patients becomes less recognizable, overlapping to features characteristic of other syndromes caused by genetic variants affecting different regulators of chromatin structure and function. Therefore, Cornelia de Lange syndrome diagnosis might be arduous due to the seldom discordance between unexpected molecular diagnosis and clinical evaluation. Here, we review the molecular features of Cornelia de Lange syndrome, supporting the hypothesis that "CdLS-like syndromes" are part of a larger "rare disease family" sharing multiple clinical features and common disrupted molecular pathways.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/patologia , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/diagnóstico , Patologia Molecular , Cromatina/genética , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/patologia , Estudos de Associação Genética , Humanos , Mutação/genética , Fenótipo , Transdução de Sinais/genética , Coesinas
5.
Clin Genet ; 98(6): 571-576, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009664

RESUMO

The gamma-1 isoform of casein kinase 1, the protein encoded by CSNK1G1, is involved in the growth and morphogenesis of cells. This protein is expressed ubiquitously among many tissue types, including the brain, where it regulates the phosphorylation of N-methyl-D-aspartate receptors and plays a role in synaptic transmission. One prior individual with a de novo variant in CSNK1G presenting with severe developmental delay and early-onset epilepsy has been reported. Here we report an updated clinical history of this previously published case, as well as four additional individuals with de novo variants in CSNK1G1 identified via microarray-based comparative genomic hybridization, exome, or genome sequencing. All individuals (n = 5) had developmental delay. At least three individuals had diagnoses of autism spectrum disorder. All participants were noted to have dysmorphic facial features, although the reported findings varied widely and therefore may not clearly be recognizable. None of the participants had additional major malformations. Taken together, our data suggest that CSNK1G1 may be a cause of syndromic developmental delay and possibly autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Adolescente , Adulto , Transtorno do Espectro Autista/patologia , Caseína Quinase II/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/patologia , Feminino , Heterozigoto , Humanos , Masculino , Sequenciamento Completo do Genoma , Adulto Jovem
6.
PLoS Genet ; 13(12): e1007137, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29261648

RESUMO

Cohesin is crucial for genome stability, cell division, transcription and chromatin organization. Its functions critically depend on NIPBL, the cohesin-loader protein that is found to be mutated in >60% of the cases of Cornelia de Lange syndrome (CdLS). Other mutations are described in the cohesin subunits SMC1A, RAD21, SMC3 and the HDAC8 protein. In 25-30% of CdLS cases no mutation in the known CdLS genes is detected. Until now, functional elements in the noncoding genome were not characterized in the molecular etiology of CdLS and therefore are excluded from mutation screening, although the impact of such mutations has now been recognized for a wide range of diseases. We have identified different elements of the noncoding genome involved in regulation of the NIPBL gene. NIPBL-AS1 is a long non-coding RNA transcribed upstream and antisense to NIPBL. By knockdown and transcription blocking experiments, we could show that not the NIPBL-AS1 gene product, but its actual transcription is important to regulate NIPBL expression levels. This reveals a possibility to boost the transcriptional activity of the NIPBL gene by interfering with the NIPBL-AS1 lncRNA. Further, we have identified a novel distal enhancer regulating both NIPBL and NIPBL-AS1. Deletion of the enhancer using CRISPR genome editing in HEK293T cells reduces expression of NIPBL, NIPBL-AS1 as well as genes found to be dysregulated in CdLS.


Assuntos
Elementos Facilitadores Genéticos , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Síndrome de Cornélia de Lange/genética , Regulação da Expressão Gênica , Genoma Humano , Células HEK293 , Humanos , Mutação , Fenótipo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Análise de Sequência de DNA , Coesinas
7.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033219

RESUMO

Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.


Assuntos
Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Face/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Síndrome de Cornélia de Lange/patologia , Fácies , Feminino , Variação Genética/genética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Masculino , Redes Neurais de Computação , Fenótipo , Adulto Jovem
9.
Hum Genet ; 136(3): 307-320, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28120103

RESUMO

The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.


Assuntos
Cromatina/fisiologia , Síndrome de Cornélia de Lange/genética , Mutação , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Masculino , Adulto Jovem
10.
Am J Med Genet A ; 173(8): 2108-2125, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28548707

RESUMO

SMC1A encodes one of the proteins of the cohesin complex. SMC1A variants are known to cause a phenotype resembling Cornelia de Lange syndrome (CdLS). Exome sequencing has allowed recognizing SMC1A variants in individuals with encephalopathy with epilepsy who do not resemble CdLS. We performed an international, interdisciplinary study on 51 individuals with SMC1A variants for physical and behavioral characteristics, and compare results to those in 67 individuals with NIPBL variants. For the Netherlands all known individuals with SMC1A variants were studied, both with and without CdLS phenotype. Individuals with SMC1A variants can resemble CdLS, but manifestations are less marked compared to individuals with NIPBL variants: growth is less disturbed, facial signs are less marked (except for periocular signs and thin upper vermillion), there are no major limb anomalies, and they have a higher level of cognitive and adaptive functioning. Self-injurious behavior is more frequent and more severe in the NIPBL group. In the Dutch group 5 of 13 individuals (all females) had a phenotype that shows a remarkable resemblance to Rett syndrome: epileptic encephalopathy, severe or profound intellectual disability, stereotypic movements, and (in some) regression. Their missense, nonsense, and frameshift mutations are evenly spread over the gene. We conclude that SMC1A variants can result in a phenotype resembling CdLS and a phenotype resembling Rett syndrome. Resemblances between the SMC1A group and the NIPBL group suggest that a disturbed cohesin function contributes to the phenotype, but differences between these groups may also be explained by other underlying mechanisms such as moonlighting of the cohesin genes.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Proteínas/genética , Síndrome de Rett/genética , Adolescente , Adulto , Criança , Pré-Escolar , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/fisiopatologia , Exoma/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Síndrome de Rett/diagnóstico , Síndrome de Rett/fisiopatologia , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Espasmos Infantis/fisiopatologia , Adulto Jovem
11.
Epilepsia ; 58(4): 565-575, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28166369

RESUMO

OBJECTIVE: The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. METHOD: Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. RESULTS: Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. SIGNIFICANCE: Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Epilepsia/genética , Mutação/genética , Convulsões/genética , Criança , Pré-Escolar , Eletroencefalografia , Epilepsia/complicações , Feminino , Heterozigoto , Humanos , Masculino , Convulsões/complicações
12.
Hum Mutat ; 36(1): 26-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25196272

RESUMO

Cornelia de Lange syndrome (CdLS) is a well-characterized developmental disorder. The genetic cause of CdLS is a mutation in one of five associated genes (NIPBL, SMC1A, SMC3, RAD21, and HDAC8) accounting for about 70% of cases. To improve our current molecular diagnostic and to analyze some of CdLS candidate genes, we developed and established a gene panel approach. Because recent data indicate a high frequency of mosaic NIPBL mutations that were not detected by conventional sequencing approaches of blood DNA, we started to collect buccal mucosa (BM) samples of our patients that were negative for mutations in the known CdLS genes. Here, we report the identification of three mosaic NIPBL mutations by our high-coverage gene panel sequencing approach that were undetected by classical Sanger sequencing analysis of BM DNA. All mutations were confirmed by the use of highly sensitive SNaPshot fragment analysis using DNA from BM, urine, and fibroblast samples. In blood samples, we could not detect the respective mutation. Finally, in fibroblast samples from all three patients, Sanger sequencing could identify all the mutations. Thus, our study highlights the need for highly sensitive technologies in molecular diagnostic of CdLS to improve genetic diagnosis and counseling of patients and their families.


Assuntos
Síndrome de Cornélia de Lange/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Proteínas/genética , Análise de Sequência de DNA/métodos , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Síndrome de Cornélia de Lange/genética , Feminino , Predisposição Genética para Doença , Humanos , Adulto Jovem
13.
Hum Mutat ; 36(4): 454-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655089

RESUMO

Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for ∼ 1%-2% of CdLS-like phenotypes.


Assuntos
Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Heterozigoto , Mutação , Fenótipo , Alelos , Estudos de Coortes , Análise Mutacional de DNA , Exoma , Fácies , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
14.
Hum Genet ; 134(6): 553-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724810

RESUMO

Coffin-Siris syndrome (CSS) and Nicolaides-Baraitser syndrome (NCBRS) are rare intellectual disability/congenital malformation syndromes that represent distinct entities but show considerable clinical overlap. They are caused by mutations in genes encoding members of the BRG1- and BRM-associated factor (BAF) complex. However, there are a number of patients with the clinical diagnosis of CSS or NCBRS in whom the causative mutation has not been identified. In this study, we performed trio-based whole-exome sequencing (WES) in ten previously described but unsolved individuals with the tentative diagnosis of CSS or NCBRS and found causative mutations in nine out of ten individuals. Interestingly, our WES analysis disclosed overlapping differential diagnoses including Wiedemann-Steiner, Kabuki, and Adams-Oliver syndromes. In addition, most likely causative de novo mutations were identified in GRIN2A and SHANK3. Moreover, trio-based WES detected SMARCA2 and SMARCA4 deletions, which had not been annotated in a previous Haloplex target enrichment and next-generation sequencing of known CSS/NCBRS genes emphasizing the advantages of WES as a diagnostic tool. In summary, we discuss the phenotypic and diagnostic challenges in clinical genetics, establish important differential diagnoses, and emphasize the cardinal features and the broad clinical spectrum of BAF complex disorders and other disorders caused by mutations in epigenetic landscapers.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Exoma , Face/anormalidades , Deformidades Congênitas do Pé/diagnóstico , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Hipotricose/diagnóstico , Hipotricose/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Mutação , Pescoço/anormalidades , Adulto , Idoso de 80 Anos ou mais , Criança , DNA Helicases/genética , Diagnóstico Diferencial , Fácies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptores de N-Metil-D-Aspartato/genética , Fatores de Transcrição/genética
15.
J Hum Genet ; 59(11): 631-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25273674

RESUMO

Multicentric osteolysis, nodulosis and arthropathy (MONA) is a rare autosomal recessive disorder. To date, 13 mutations of the matrix metalloproteinase 2 (MMP2) gene have been detected in 26 patients with MONA and other osteolytic syndromes. Here, we describe the molecular and functional analysis of a novel MMP2 mutation in two adult Italian siblings with MONA. Both siblings displayed palmar-plantar subcutaneous nodules, tendon retractions, limb arthropathies, osteolysis in the toes and pigmented fibrous skin lesions. Molecular analysis identified a homozygous MMP2 missense mutation in exon 8 c.1228G>C (p.G410R), not detected in 260 controls and predicted by several bioinformatic tools to be pathogenic. By protein modelling, the mutant residue was predicted to affect the main chain conformation of the catalytic domain. Gelatin zymography, the gold standard test for MMP2 function, of serum-free conditioned medium from G410R-MMP2-expressing human embryonic kidney (HEK) cells, showed a complete loss of gelatinolytic activity. The novel mutation is located in the catalytic domain, as are 3 (p.E404K, p.V400del and p.G406D) of the other 13 MMP2 mutations described to date; however, p.G410R underlies a phenotype that is only partially overlapping that of other MMP2 exon 8 mutation carriers. Our results further delineate the complexity of genotype-phenotype correlations in MONA, broaden the repertoire of reported MMP2 mutation and enhance the comprehension of the protein motifs crucial for MMP2 catalytic activity.


Assuntos
Domínio Catalítico/genética , Metaloproteinase 2 da Matriz/genética , Mutação de Sentido Incorreto , Osteólise/genética , Irmãos , Adulto , Sequência de Aminoácidos , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Células HEK293 , Homozigoto , Humanos , Masculino , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Osteólise/metabolismo , Osteólise/patologia , Linhagem , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
16.
Cureus ; 16(4): e57378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694681

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare polymalformative genetic disorder with multisystemic involvement. Despite numerous clinical and molecular studies, the specific evaluation of the quality of life (QoL) and its relationship with syndrome-specific risk factors has not been explored. METHODS: The QoL of 33 individuals diagnosed with CdLS, aged between 4 and 21 years, was assessed using the Kidslife questionnaire. Specifically, the influence of 14 risk factors on overall QoL and 8 of its domains was analyzed. RESULTS: The study revealed below-median QoL (45.3 percentile), with the most affected domains being physical well-being, personal development, and self-determination. When classifying patients based on their QoL and affected domains, variants in the NIPBL gene, clinical scores ≥11, and severe behavioral and communication issues were found to be the main risk factors. CONCLUSIONS: We emphasize the need for a comprehensive approach to CdLS that encompasses clinical, molecular, psychosocial, and emotional aspects. The "Kidslife questionnaire" proved to be a useful tool for evaluating QoL, risk factors, and the effectiveness of implemented strategies. In this study, we underscore the importance of implementing corrective measures to improve the clinical score. Furthermore, we highlight the necessity of applying specific therapies for behavioral problems after ruling out underlying causes such as pain or gastroesophageal reflux and implementing measures that facilitate communication and promote social interaction.

17.
HGG Adv ; 5(3): 100287, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553851

RESUMO

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.

18.
Am J Med Genet A ; 161A(11): 2909-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24124034

RESUMO

We report on the clinical and molecular characterization of eight patients, one male and seven females, with clinical diagnosis of Cornelia de Lange syndrome (CdLS), who were found to carry distinct mutations of the SMC1A gene. Five of the eight mutations are novel, with two involving amino acid residues previously described as altered in a different way. The other three have been reported each in a single case. Comparison of pairs of individuals with the same mutation indicates only partial overlap of their clinical phenotypes. The following novel missense mutations, all affecting highly conserved amino acid residues, were found: p.R398G in the N-terminal coiled-coil domain, p.V651M in the C-terminal coiled-coil/hinge junction, p.R693G in the C-terminal coiled-coil, and p.N1166T and p.L1189F in the C-terminal ABC cassette. The latter is localized in the H-loop, and represents the first mutation involving a functional motif of SMC1A protein. The effect of the mutations on SMC1A protein function has been predicted using four bioinformatic tools. All mutations except p.V651M were scored as pathogenic by three or four of the tools. p.V651M was found in the only male individual of our cohort, who presented with the most severe phenotype. This raises the issue of gender effect when addressing mutation-phenotype correlation for genes such as SMC1A, which incompletely escapes X-inactivation. Our clinical and molecular findings expand the total number of characterized SMC1A-mutated patients (from 44 to 52) and the restricted repertoire of SMC1A mutations (from 29 to 34), contributing to the molecular and clinical signature of SMC1A-based CdLS.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Mutação , Fenótipo , Adolescente , Sequência de Aminoácidos , Criança , Pré-Escolar , Éxons , Fácies , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência
19.
Artigo em Inglês | MEDLINE | ID: mdl-36482071

RESUMO

Objective: The aim of this study was to expand knowledge about endocrine disorders in individuals with Cornelia de Lange syndrome (CdLS), a rare developmental genetic disorder with anomalies in multiple organs and systems. Methods: Hormone levels, clinical scores, anthropometric measurements, and molecular analysis were assessed in 24 individuals with CdLS. Results: Hyperprolactinemia was the most common endocrine disorder. Three patients showed subclinical hypothyroidism. In the gonadotropic axis, mildly delayed puberty was observed, as well as genital anomalies, such as cryptorchidism. Despite short stature, levels of insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 were normal, on average. Three prepubertal individuals without risk factors had higher than normal values for the homeostatic model assessment of insulin resistance (HOMA-IR) and for insulinemia, suggesting insulin resistance. Furthermore, two adults had elevated BMIs associated with HOMA-IR values over the cut-off values. Conclusion: CdLS can lead to dysregulation of the endocrine system, particularly in patients with high HOMA-IR values and insulinemia who are at risk of insulin resistance. Therefore, clinical follow-ups with hormonal assessments are proposed for individuals with CdLS.

20.
Nat Commun ; 13(1): 6570, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323681

RESUMO

Disease gene discovery on chromosome (chr) X is challenging owing to its unique modes of inheritance. We undertook a systematic analysis of human chrX genes. We observe a higher proportion of disorder-associated genes and an enrichment of genes involved in cognition, language, and seizures on chrX compared to autosomes. We analyze gene constraints, exon and promoter conservation, expression, and paralogues, and report 127 genes sharing one or more attributes with known chrX disorder genes. Using machine learning classifiers trained to distinguish disease-associated from dispensable genes, we classify 247 genes, including 115 of the 127, as having high probability of being disease-associated. We provide evidence of an excess of variants in predicted genes in existing databases. Finally, we report damaging variants in CDK16 and TRPC5 in patients with intellectual disability or autism spectrum disorders. This study predicts large-scale gene-disease associations that could be used for prioritization of X-linked pathogenic variants.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Humanos , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Bases de Dados Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA