Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(15): 12060-12069, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38586896

RESUMO

This theoretical investigation delves into the structural, electronic, and electrochemical properties of two hexagonal iron-arsenide monolayers, 1T-FeAs and 1H-FeAs, focusing on their potential as anode materials for lithium-ion batteries. Previous studies have highlighted the ferromagnetic nature of 1T-FeAs at room temperature. Our calculations reveal that both phases exhibit metallic behaviour with spin-polarized electronic band structures. Electrochemical studies show that the 1T-FeAs monolayer has better ionic conductivity for Li ions than the 1H-FeAs phase, attributed to a lower activation barrier of 0.38 eV. This characteristic suggests a faster charge/discharge rate. Both FeAs phases exhibit comparable theoretical capacities (374 mA h g-1), outperforming commercial graphite anodes. The average open-circuit voltage for maximum Li atom adsorption is 0.61 V for 1H-FeAs and 0.44 V for 1T-FeAs. The volume expansion over the maximum adsorption of Li atoms on both phases is also remarkably less than the commercially used anode material such as graphite. Furthermore, the adsorption of Li atoms onto 1H-FeAs induces a remarkable transition from ferromagnetism to anti-ferromagnetism, with minimal impact on the electronic band structure. In contrast, the original state of 1T-FeAs remains unaffected by Li adsorption. To summarize, both 1T-FeAs and 1H-FeAs monolayers have potential as promising anode materials for lithium-ion batteries, offering valuable insights into their electrochemical performance and phase transition behaviour upon Li adsorption.

2.
Phys Chem Chem Phys ; 26(3): 2044-2057, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38126442

RESUMO

Being motivated by a recently synthesized biphenylene carbon monolayer (BPN), using first principles methods, we have studied its inorganic analogue (B-N analogue) named I-BPN. A comparative study of structural, electronic and mechanical properties between BPN and I-BPN was carried out. Like BPN, the stability of I-BPN was verified in terms of formation energy, phonon dispersion calculations, and mechanical parameters (Young's modulus and Poisson's ratio). The chemical inertness of I-BPN was also investigated by adsorbing an oxygen molecule in an oxygen-rich environment. It has been found that the B-B bond favours the oxygen molecule to be adsorbed through chemisorption. The lattice transport properties reveal that the phonon thermal conductivity of I-BPN is ten times lower than that of BPN. The electronic band structure reveals that I-BPN is a semiconductor with an indirect bandgap of 1.88 eV, while BPN shows metallic behaviour. In addition, we investigated various thermoelectric properties of I-BPN for possible thermoelectric applications. The thermoelectric parameters, such as the Seebeck coefficient, show the highest peak value of 0.00289 V K-1 at 300 K. Electronic transport properties reveal that I-BPN is highly anisotropic along the x and y-axes. Furthermore, the thermoelectric power factor as a function of chemical potential shows a peak value of 0.057 W m-1 K-2 along the x-axis in the p-type doping region. The electronic figure of merit shows a peak value of approximately unity. However, considering lattice thermal conductivity, the peak value of the total figure of merit (ZT) reduces to 0.68(0.46) for p-type and 0.56(0.48) for n-type doping regions along the x(y) direction at 900 K. It is worth noting that our calculated ZT value of I-BPN is higher than that of many other reported B-N composite materials.

3.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37942870

RESUMO

The lead halide perovskites have emerged as promising materials with intriguing photo-physical properties and have immense potential for photovoltaic applications. A comprehensive study on the kinetics of charge carrier (electron/hole) generation and transfer across the interface is key to realizing their future scope for efficient device engineering. Herein, we investigate the interfacial charge transfer (CT) dynamics in cesium lead halide (CsPbBr3) perovskite quantum dots (PQDs) with energetically favorable electron acceptors, anthraquinone (AQ) and p-benzoquinone (BQ), and hole acceptors such as pyrene and 4-(dimethylamino)pyridine (DMAP). With various steady-state and time-resolved spectroscopic and microscopic measurements, a faster electron transfer rate is estimated for CsPbBr3 PQDs with BQ compared to that of AQ, while a superior hole transfer for DMAP is divulged compared to pyrene. In concurrence with the spectroscopic measurements, conducting atomic force microscopic studies across the electrode-PQD-electrode junction reveals an increment in the conductance of the PQD in the presence of both the electron and hole acceptors. The variation of the density of states calculation in the presence of the hole acceptors offers strong support and validation for faster CT efficiency. The above findings suggest that a careful selection of simple yet efficient molecular arrangements can facilitate rapid carrier transfer, which can be designed as auxiliary layers for smooth CT and help in the engineering of cost-effective photovoltaic devices.

4.
Nanoscale ; 16(5): 2574-2590, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224290

RESUMO

Within the Coulomb blockade regime, our study delves into the charge, spin, and thermoelectric transport characteristics of a benzene-based molecular nano-junction using the Pauli master equation and linear response theory. The charge- and spin-transport studies show strong negative differential conductance features in the current-voltage (I-V) characteristics for the ortho and meta connections of electrodes on either side. Contrarily, the para-connection displays Coulomb staircase behavior. By exploring spin current behavior in the presence of spin-polarized electrodes or an external Zeeman field, we establish a methodology that facilitates precise control over the specific spin flow. Various charge and spin thermoelectric transport coefficients have been studied with varying chemical potentials. We focus on spin-polarized conductance, the Seebeck coefficient, and the figure of merit. By adjusting electrode polarization or employing an external magnetic field, we achieve an impressive peak value for the spin thermoelectric figure of merit, approximately 4.10. This outcome underscores the strategic value of harnessing both spin-polarized electrodes and external magnetic fields within the domain of spin caloritronics.

5.
Nanoscale ; 16(27): 13131-13147, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38912560

RESUMO

Inspired by a freshly synthesized two-dimensional biphenylene carbon network, which features a captivating combination of hexagonal, square, and octagonal rings, we explored a similar biphenylene network composed of boron, carbon, and nitrogen (bpn-BCN) using first-principles calculations. There are six possible phases of borocarbonitrides, which are isoelectronic to biphenylene carbon networks with a stoichiometric ratio of 1 : 1 : 1 for boron (B), carbon (C), and nitrogen (N) atoms. All possible isoelectronic structures of the BCN combination of biphenylene networks are found to be stable, according to first-principles calculations. However, the geometry has a relatively large number of robust C-C and B-N bonds and strong partially ionic-covalent B-C and C-N bonds inside these bpn-BCN monolayers are effectively more stable. Furthermore, we employed first-principles calculations to investigate the electrochemical properties of the most stable geometry of BCN biphenylene as a potential anode material for alkali metal (AM) ion batteries. A global search has been made to find the most favourable alkali metal ion adsorption sites. The biphenylene monolayer has octagonal, square, and hexagonal motifs with different adsorption strengths. Furthermore, the partially ionic bond of B-N (due to the electronegativity difference) also supports the alkali metal ions for adsorption. The electronic properties of the stable phase of bpn-BCN reveal its narrow bandgap semiconductor nature. The ion diffusion calculations show a low activation barrier for Li, Na, and K of 0.65 eV, 0.26 eV, and 0.23 eV, respectively, indicating a fast charge/discharge rate. Furthermore, the theoretical capacities of the BCN biphenylene monolayer for Li (1057.33 mA h g-1), Na (647.27 mA h g-1), and K (465.98 mA h g-1) are found to be greater than those of commercial graphite. The average open-circuit voltage for AM decreases with increasing metal ion concentrations. It falls within a reasonable range of 0.34-1.89 V. Our results show that the BCN biphenylene monolayer could be a promising anode material in alkali metal ion rechargeable batteries.

6.
J Phys Condens Matter ; 35(47)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37567239

RESUMO

Ferroelectric materials with crystal symmetry transition from single phase to multiphase coexistence exhibit anomalous photosensitive properties. The optical properties (optical band gap and photosensitive) found on non-centrosymmetric and centrosymmetric systems achieved research interest because of their interesting behavior. In this regard, the lead-free polycrystalline Ba1-xSrxTiO3(BSTO, 0⩽x⩽0.3) has been synthesized to explore its crystal structure, dielectric, light absorption, and photocurrent sensing properties for various applications. Both experimental and theoretical studies on BSTO (0⩽x⩽0.3) ceramics confirm the crystal symmetry transition with the reduction of band gap as compared to pristine BaTiO3. This crystal symmetry transition plays an important role in varying the various physical properties as it involves the transition from the polar phase to the non-polar phase. The optical band gap has been estimated experimentally by the Tauc plot method and found that there is a small variation of energy band gap from 3.615 eV to 3.212 eV with Sr substitution. The highest dielectric constant was found to be 5327 at lower frequency on Ba0.76Sr0.24TiO3after that for further increase in Sr concentration the dielectric constant decreases because of the introduction of the non-polar phase. A strong correlation between crystal structure and physical properties (dielectric, optical, etc.) has been observed. The photocurrent of the samples is significant which reveals that the sample is influenced by the photons. In a nutshell, the present study deepens the understanding of the correlation between crystal structure and various physical properties of BSTO and, hence provides an idea of required design parameters to construct a ferroelectric system for better photosensitive nature suitable for device applications.

7.
J Phys Chem Lett ; 14(33): 7340-7345, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561565

RESUMO

Optimization of perovskite-based optoelectronic performance demands prudent engineering in the device architecture with facile transport of generated charge carriers. Herein, we explore the charge transfer (CT) kinetics in perovskite nanocrystals (PNCs), CsPbBr3, with two redox-active quinones, menadione (MD) and anthraquinone (AQ), and its alteration in halide exchanged CsPbCl3. With a series of spectroscopic and microscopic measurements, we infer that both electron and hole transfer (ET-HT) prevail in CsPbCl3 with quinones, resulting in a faster CT, while ET predominates for CsPbBr3. Furthermore, current-sensing atomic force microscopy measurements demonstrate that the conductance across a metal-PNC-metal nanojunction is improved in the presence of quinones. The contributions of ET and HT to current conduction across PNCs are well supported and validated by theoretical calculations of the density of states. These outcomes convey a new perspective on the relevance of ET and HT in the optimal current conduction and optoelectronic device engineering of perovskites.

8.
Phys Chem Chem Phys ; 12(26): 6924-7, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20490413

RESUMO

Using density functional theory, we have investigated the structural, electronic and magnetic properties of infinitely periodic organometallic vanadium-anthracene ([V(2)Ant](infinity)) and [V(4)(BNAnt)(2)](infinity) (where BNAnt is B-N analogue of anthracene) for their possible application in spintronics. From our calculations, we find that one-dimensional [V(2)Ant](infinity) and [V(4)(BNAnt)(2)](infinity) wires exhibit robust ferromagnetic half-metallic and metallic behavior, respectively. The finite sized V(6)Ant(2) and V(6)(BNAnt)(2) clusters are also found to exhibit efficient spin filter properties when coupled to graphene electrodes on either side.

9.
J Phys Condens Matter ; 21(9): 095301, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21817384

RESUMO

Motivated by recent experiments, we have studied the transport behavior of coupled quantum dot systems in the Coulomb blockade regime using the master (rate) equation approach. We explore how electron-electron interactions in a donor-acceptor system, resembling weakly coupled quantum dots with varying charging energy, can modify the system's response to an external bias, taking it from normal Coulomb blockade behavior to negative differential resistance (NDR) in the current-voltage characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA