Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 34(1): 1623-1632, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31480857

RESUMO

This study aimed to search the α-glucosidase inhibitors from the barks part of Artocarpus elasticus. The responsible compounds for α-glucosidase inhibition were found out as dihydrobenzoxanthones (1-4) and alkylated flavones (5-6). All compounds showed a significant enzyme inhibition toward α-glucosidase with IC50s of 7.6-25.4 µM. Dihydrobenzoxanthones (1-4) exhibited a competitive inhibition to α-glucosidase. This competitive behaviour was fully characterised by double reciprocal plots, Yang's method, and time-dependent experiments. The compound 1 manifested as the competitive and reversible simple slow-binding, with kinetic parameters k3 = 0.0437 µM-1 min-1, k4 = 0.0166 min-1, and Kiapp = 0.3795 µM. Alkylated flavones (5-6) were mixed type I (KI < KIS) inhibitors. The binding affinities (KSV) represented by all inhibitors were correlated to their concentrations and inhibitory potencies (IC50). Moreover, compounds 1 and 5 were identified as new ones named as artoindonesianin W and artoflavone B, respectively. Molecular modelling study proposed the putative binding conformation of competitive inhibitors (1-4) to α-glucosidase at the atomic level.


Assuntos
Artocarpus/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Casca de Planta/química , Xantonas/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Fluorescência , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/química , Xantonas/isolamento & purificação
2.
Int J Mol Sci ; 20(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823604

RESUMO

Acetylcholinesterase (AChE) catalyzes the hydrolysis of neurotransmitter acetylcholine to acetate and choline in a synaptic cleft. Deficits in cholinergic neurotransmitters are linked closely with the progression of Alzheimer's disease (AD), which is a neurodegenerative disorder characterized by memory impairment, and a disordered cognitive function. Since the previously approved AChE inhibitors, donepezil (Aricept), galantamine (Reminyl), and rivastigmine (Exelon), have side effects and several studies are being carried out out to develop novel AD drugs, we have applied a three-dimensional quantitative structure-activity relationship (3D QSAR) and structure-based pharmacophore modeling methodologies to identify potential candidate inhibitors against AChE. Herein, 3D QSAR and structure-based pharmacophore models were built from known inhibitors and crystal structures of human AChE in complex with donepezil, galantamine, huperzine A, and huprine W, respectively. The generated models were used as 3D queries to screen new scaffolds from various chemical databases. The hit compounds obtained from the virtual screening were subjected to an assessment of drug-like properties, followed by molecular docking. The final hit compounds were selected based on binding modes and molecular interactions in the active site of the enzyme. Furthermore, molecular dynamics simulations for AChE in complex with the final hits were performed to evaluate that they maintained stable interactions with the active site residues. The binding free energies of the final hits were also calculated using molecular mechanics/Poisson-Boltzmann surface area method. Taken together, we proposed that these hits can be promising candidates for anti-AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/uso terapêutico , Descoberta de Drogas , Acetilcolinesterase/metabolismo , Alcaloides/química , Sítios de Ligação , Bases de Dados de Compostos Químicos , Donepezila/química , Galantamina/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Sesquiterpenos/química
3.
Molecules ; 24(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888158

RESUMO

Employing iPrMgCl as an advanced base instead of lithium hexamethyldisilazane (LHMDS) resulted in dramatic improvements in aza-Claisen rearrangement. This advance is considered responsible for the increased bulkiness of the alkoxide moiety (including magnesium cation and ligands), followed by a resultant conformational change of the transition state. To support this hypothesis, various substrates of aza-Claisen rearrangement were prepared and screened. In addition, a molecular dynamic simulation study was performed to investigate and compare the structural stability of reaction intermediates.


Assuntos
Compostos Aza/química , Técnicas de Química Sintética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular
4.
Molecules ; 23(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469538

RESUMO

Chagas disease is one of the primary causes of heart diseases accounting to 50,000 lives annually and is listed as the neglected tropical disease. Because the currently available therapies have greater toxic effects with higher resistance, there is a dire need to develop new drugs to combat the disease. In this pursuit, the 3D QSAR ligand-pharmacophore (pharm 1) and receptor-based pharmacophore (pharm 2) search was initiated to retrieve the candidate compounds from universal natural compounds database. The validated models were allowed to map the universal natural compounds database. The obtained lead candidates were subjected to molecular docking against cysteine protease (PDB code: 1ME3) employing -Cdocker available on the discovery studio. Subsequently, two Hits have satisfied the selection criteria and were escalated to molecular dynamics simulation and binding free energy calculations. These Hits have demonstrated higher dock scores, displayed interactions with the key residues portraying an ideal binding mode complemented by mapping to all the features of pharm 1 and pharm 2. Additionally, they have rendered stable root mean square deviation (RMSD) and potential energy profiles illuminating their potentiality as the prospective antichagastic agents. The study further demonstrates the mechanism of inhibition by tetrad residues compromising of Gly23 and Asn70 holding the ligand at each ends and the residues Gly65 and Gly160 clamping the Hits at the center. The notable feature is that the Hits lie in close proximity with the residues Glu66 and Leu67, accommodating within the S1, S2 and S3 subsites. Considering these findings, the study suggests that the Hits may be regarded as effective therapeutics against Chagas disease.


Assuntos
Produtos Biológicos/farmacologia , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas/métodos , Produtos Biológicos/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/metabolismo , Biologia Computacional/métodos , Inibidores de Cisteína Proteinase/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Estudos Prospectivos , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
5.
Bioorg Med Chem ; 25(8): 2498-2506, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28318895

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC50s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC50=70.25µM) and methylbutenyl 8 (IC50>200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC50=0.47µM) showed 30-fold more potency than ursolic acid (IC50=15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with Km, Vmax and Kik/Kiv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k5=0.0751µM-1S-1, k6=0.0249µM-1S-1 and Kiapp=0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring.


Assuntos
Inibidores Enzimáticos/farmacologia , Garcinia/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Xantonas/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Modelos Moleculares , Espectroscopia de Prótons por Ressonância Magnética , Eletricidade Estática , Xantonas/isolamento & purificação
6.
Bioorg Med Chem ; 24(2): 153-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706112

RESUMO

Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson's disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 µg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50=500 nM), significantly. Another potent inhibitor 1 (IC50=2.9 µM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Ki(app)=1.48 nM, k3=0.0033 nM(-1) min(-1) and k4=0.0049 min(-1). Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 µM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.


Assuntos
Inibidores Enzimáticos/farmacologia , Fabaceae/química , Isoflavonas/farmacologia , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Isoflavonas/química , Isoflavonas/isolamento & purificação , Melaninas/biossíntese , Camundongos , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Molecules ; 21(4): 512, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27104500

RESUMO

Mastoparans from the venom of social wasps have attracted considerable attention as effective antibiotic candidates. In this study, mastoparan V1 (MP-V1) from Vespula vulgaris was first disclosed to have a peptide amino acid sequence distinct from typical mastoparans and its biochemical properties and antimicrobial effects were compared with those of typical mastoparans MP-L, -X(V) and -B. Circular dichroism (CD) spectroscopy revealed that MP-V1 and -X(V) form more stable α-helical conformations in lipid membrane-like environments than MP-L and -B. In parallel, these two also showed more effective antimicrobial activities against the pathogens than did MP-L and -B. Although MP-V1 had a less stable α-helical conformation than MP-X(V), it showed stronger antimicrobial effects against Streptococcus mutans and Salmonella enterica than MP-X(V). In the meantime, analysis of hemolytic activity revealed a range of doses (~50 µM) that exhibited little potent cytotoxicity on human erythrocytes. Finally, the atypical MP-V1 peptide amino acid sequence provided important clues to understanding its antimicrobial mechanism from a structural perspective. Therefore, it has been concluded that MP-V1 is a de novo type of mastoparan with superior antimicrobial activities against both pathogenic bacteria and fungi, which may be useful in developing multipurpose antimicrobial drugs against infectious diseases.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Salmonella enterica/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Venenos de Vespas/química , Venenos de Vespas/farmacologia , Vespas/metabolismo , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Células Cultivadas , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/isolamento & purificação , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Venenos de Vespas/isolamento & purificação , Vespas/química
8.
BMC Struct Biol ; 15: 1, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583233

RESUMO

BACKGROUND: Pig aldo-keto reductase family 1 member C1 (AKR1C1) belongs to AKR superfamily which catalyzes the NAD(P)H-dependent reduction of various substrates including steroid hormones. Previously we have reported two paralogous pig AKR1C1s, wild-type AKR1C1 (C-type) and C-terminal-truncated AKR1C1 (T-type). Also, the C-terminal region significantly contributes to the NADPH-dependent reductase activity for 5α-DHT reduction. Molecular modeling studies combined with kinetic experiments were performed to investigate structural and enzymatic differences between wild-type AKR1C1 C-type and T-type. RESULTS: The results of the enzyme kinetics revealed that Vmax and kcat values of the T-type were 2.9 and 1.6 folds higher than those of the C-type. Moreover, catalytic efficiency was also 1.9 fold higher in T-type compared to C-type. Since x-ray crystal structures of pig AKR1C1 were not available, three dimensional structures of the both types of the protein were predicted using homology modeling methodology and they were used for molecular dynamics simulations. The structural comparisons between C-type and T-type showed that 5α-DHT formed strong hydrogen bonds with catalytic residues such as Tyr55 and His117 in T-type. In particular, C3 ketone group of the substrate was close to Tyr55 and NADPH in T-type. CONCLUSIONS: Our results showed that 5α-DHT binding in T-type was more favorable for catalytic reaction to facilitate hydride transfer from the cofactor, and were consistent with experimental results. We believe that our study provides valuable information to understand important role of C-terminal region that affects enzymatic properties for 5α-DHT, and further molecular mechanism for the enzyme kinetics of AKR1C1 proteins.


Assuntos
20-Hidroxiesteroide Desidrogenases/química , 20-Hidroxiesteroide Desidrogenases/metabolismo , Di-Hidrotestosterona/metabolismo , Sus scrofa/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Ligação de Hidrogênio , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
9.
Acta Pharmacol Sin ; 36(8): 998-1012, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26051108

RESUMO

AIM: Recent evidence suggests that aldo-keto reductase family 1 B10 (AKR1B10) may be a potential diagnostic or prognostic marker of human tumors, and that AKR1B10 inhibitors offer a promising choice for treatment of many types of human cancers. The aim of this study was to identify novel chemical scaffolds of AKR1B10 inhibitors using in silico approaches. METHODS: The 3D QSAR pharmacophore models were generated using HypoGen. A validated pharmacophore model was selected for virtual screening of 4 chemical databases. The best mapped compounds were assessed for their drug-like properties. The binding orientations of the resulting compounds were predicted by molecular docking. Density functional theory calculations were carried out using B3LYP. The stability of the protein-ligand complexes and the final binding modes of the hit compounds were analyzed using 10 ns molecular dynamics (MD) simulations. RESULTS: The best pharmacophore model (Hypo 1) showed the highest correlation coefficient (0.979), lowest total cost (102.89) and least RMSD value (0.59). Hypo 1 consisted of one hydrogen-bond acceptor, one hydrogen-bond donor, one ring aromatic and one hydrophobic feature. This model was validated by Fischer's randomization and 40 test set compounds. Virtual screening of chemical databases and the docking studies resulted in 30 representative compounds. Frontier orbital analysis confirmed that only 3 compounds had sufficiently low energy band gaps. MD simulations revealed the binding modes of the 3 hit compounds: all of them showed a large number of hydrogen bonds and hydrophobic interactions with the active site and specificity pocket residues of AKR1B10. CONCLUSION: Three compounds with new structural scaffolds have been identified, which have stronger binding affinities for AKR1B10 than known inhibitors.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/metabolismo , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Aldo-Ceto Redutases , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Humanos , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Termodinâmica
10.
Mol Divers ; 18(1): 119-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24173651

RESUMO

Primary hypercholesterolemia is the root cause for major health issues like coronary heart disease and atherosclerosis. Regulating plasma cholesterol level, which is the product of biosynthesis as well as dietary intake, has become one of the major therapeutic strategies to effectively control these diseases. Human cholesterol esterase (hCEase) is an interesting target involved in the regulation of plasma cholesterol level and thus inhibition of this enzyme is highly effective in the treatment of hypercholesterolemia. This study was designed to understand the activation mechanism that enables the enzyme to accommodate long chain fatty acids and to identify the structural elements for the successful catalysis. Primarily the activation efficiencies of three different bile salts were studied and compared using molecular dynamics simulations. Based on the conformations of major surface loops, hydrogen bond interactions, and distance analyses, taurocholate was concluded as the preferred activator of the enzyme. Furthermore, the importance of two bile salt binding sites (proximal and remote) and the crucial role of 7α-OH group of the bile salts in the activation of hCEase was examined and evidenced. The results of our study explain the structural insights of the activation mechanism and show the key features of the bile salts responsible for the enzyme activation which are very useful in hypolipidemic drug designing strategies.


Assuntos
Anticolesterolemiantes/farmacologia , Desenho de Fármacos , Esterol Esterase/metabolismo , Animais , Anticolesterolemiantes/química , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/farmacologia , Domínio Catalítico , Bovinos , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Hidróxidos/química , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
11.
Nat Commun ; 13(1): 6303, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272977

RESUMO

Regulated in development and DNA damage response 1 (REDD1) expression is upregulated in response to metabolic imbalance and obesity. However, its role in obesity-associated complications is unclear. Here, we demonstrate that the REDD1-NF-κB axis is crucial for metabolic inflammation and dysregulation. Mice lacking Redd1 in the whole body or adipocytes exhibited restrained diet-induced obesity, inflammation, insulin resistance, and hepatic steatosis. Myeloid Redd1-deficient mice showed similar results, without restrained obesity and hepatic steatosis. Redd1-deficient adipose-derived stem cells lost their potential to differentiate into adipocytes; however, REDD1 overexpression stimulated preadipocyte differentiation and proinflammatory cytokine expression through atypical IKK-independent NF-κB activation by sequestering IκBα from the NF-κB/IκBα complex. REDD1 with mutated Lys219/220Ala, key amino acid residues for IκBα binding, could not stimulate NF-κB activation, adipogenesis, and inflammation in vitro and prevented obesity-related phenotypes in knock-in mice. The REDD1-atypical NF-κB activation axis is a therapeutic target for obesity, meta-inflammation, and metabolic complications.


Assuntos
Fígado Gorduroso , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Fígado Gorduroso/metabolismo , Citocinas , Aminoácidos
12.
ACS Omega ; 5(4): 1773-1781, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039312

RESUMO

Progeria is a globally noticed rare genetic disorder manifested by premature aging with no effective treatment. Under these circumstances, farnesyltransferase inhibitors (FTIs) are marked as promising drug candidates. Correspondingly, a pharmacophore model was generated exploiting the features of lonafarnib. The selected pharmacophore model was allowed to screen the InterBioScreen natural compound database to retrieve the potential lead candidates. A series of filtering steps were applied to assess the drug-likeness of the compounds. The obtained compounds were advanced to molecular docking employing the CDOCKER module available with Discovery Studio (DS). Subsequently, three compounds (Hits) have displayed a higher dock score and demonstrated key residue interactions with stable molecular dynamics simulation results compared to the reference compound. Taken together, we therefore put forth three identified Hits as FTIs that may further serve as chemical spaces in designing new compounds.

13.
Biomolecules ; 10(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512851

RESUMO

DDX3 belongs to RNA helicase family that demonstrates oncogenic properties and has gained wider attention due to its role in cancer progression, proliferation and transformation. Mounting reports have evidenced the role of DDX3 in cancers making it a promising target to abrogate DDX3 triggered cancers. Dual pharmacophore models were generated and were subsequently validated. They were used as 3D queries to screen the InterBioScreen database, resulting in the selection of curcumin that was escalated to molecular dynamics simulation studies. In vitro anti-cancer analysis was conducted on three cell lines such as MCF-7, MDA-MB-231 and HeLa, which were evaluated along with exemestane. Curcumin was docked into the active site of the protein target (PDB code 2I4I) to estimate the binding affinity. The compound has interacted with two key residues and has displayed stable molecular dynamics simulation results. In vitro analysis has demonstrated that both the candidate compounds have reduced the expression of DDX3 in three cell lines. However, upon combinatorial treatment of curcumin (10 and 20 µM) and exemestane (50 µM) a synergism was exhibited, strikingly downregulating the DDX3 expression and has enhanced apoptosis in three cell lines. The obtained results illuminate the use of curcumin as an alternative DDX3 inhibitor and can serve as a chemical scaffold to design new small molecules.


Assuntos
Androstadienos/farmacologia , Curcumina/farmacologia , RNA Helicases DEAD-box/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Androstadienos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Células Tumorais Cultivadas
14.
ACS Chem Neurosci ; 10(3): 1326-1335, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30407786

RESUMO

Protein acetylation and deacetylation play vital roles in the structural and physiological behavior of target proteins. Histone deacetylase 6 (HDAC6) remains a key therapeutic target in several chronic diseases such as cancer, neurodegenerative, and hematological diseases. In tau-pathogenesis, HDAC6 tightly regulates microtubule-associated tau physiology, and its inhibition suppresses Alzheimer's phenotype. To this end, the current study has identified novel HDAC6 inhibitors by structure-based drug designing method. A pharmacophore was generated from HDAC6 in complex with trichostatin A. The selected pharmacophore had five features including two hydrogen bond donors, one hydrogen bond acceptor, and two hydrophobic features. Pharmacophore validation obtained the highest GH score of 0.80. By applying Lipinski's rule of five and ADMET Descriptors, a drug-like database of 29 183 molecules was generated from the Zinc Natural Product Database. The validated pharmacophore screened 841 drug-like molecules and was subsequently subjected to molecular docking in the active site of HDAC6. Molecular docking identified 11 hits, where they showed the highest ChemPLP score (>90.00), stable conformation, and hydrogen-bond interactions with catalytic residues of HDAC6. Finally, molecular dynamics simulation identified three molecules as potent HDAC6 inhibitors with stable root-mean-square deviation and the highest number of hydrogen bonds with the catalytic residues of HDAC6. Overall, we recommend three novel inhibitors of HDAC6, capable of suppressing the microtubule-associated tau-pathogenesis.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas tau/metabolismo , Domínio Catalítico , Desenho de Fármacos , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Proteínas tau/química
15.
Comput Biol Chem ; 83: 107113, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493740

RESUMO

Breast cancer is one of the major impediments affecting women globally. The ATP-dependant heat shock protein 90 (Hsp90) forms the central component of molecular chaperone machinery that predominantly governs the folding of newly synthesized peptides and their conformational maturation. It regulates the stability and function of numerous client proteins that are frequently upregulated and/or mutated in cancer cells, therefore, making Hsp90 inhibition a promising therapeutic strategy for the development of new efficacious drugs to treat breast cancer. In the present in silico investigation, a structure-based pharmacophore model was generated with hydrogen bond donor, hydrogen bond acceptor and hydrophobic features complementary to crucial residues Ala55, Lys58, Asp93, Ile96, Met98 and Thr184 directed at inhibiting the ATP-binding activity of Hsp90. Subsequently, the phytochemical dataset of 3210 natural compounds was screened to retrieve the prospective inhibitors after rigorous validation of the model pharmacophore. The retrieved 135 phytocompounds were further filtered by drug-likeness parameters including Lipinski's rule of five and ADMET properties, then investigated via molecular docking-based scoring. Molecular interactions were assessed using Genetic Optimisation for Ligand Docking program for 95 drug-like natural compounds against Hsp90 along with two clinical drugs as reference compounds - Geldanamycin and Radicicol. Docking studies revealed three phytochemicals are better than the investigated clinical drugs. The reference and hit compounds with dock scores of 48.27 (Geldanamycin), 40.90 (Radicicol), 73.04 (Hit1), 72.92 (Hit2) and 68.12 (Hit3) were further validated for their binding stability through molecular dynamics simulations. We propose that the non-macrocyclic scaffolds of three identified phytochemicals might aid in the development of novel therapeutic candidates against Hsp90-driven cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Modelos Moleculares , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Relação Estrutura-Atividade
16.
Cells ; 8(3)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901950

RESUMO

Angiogenesis is defined as the formation of new blood vessels and is a key phenomenon manifested in a host of cancers during which tyrosine kinases play a crucial role. Vascular endothelial growth factor receptor-2 (VEGFR-2) is pivotal in cancer angiogenesis, which warrants the urgency of discovering new anti-angiogenic inhibitors that target the signalling pathways. To obtain this objective, a structure-based pharmacophore model was built from the drug target VEGFR-2 (PDB code: 4AG8), complexed with axitinib and was subsequently validated and employed as a 3D query to retrieve the candidate compounds with the key inhibitory features. The model was escalated to molecular docking studies resulting in seven candidate compounds. The molecular docking studies revealed that the seven compounds displayed a higher dock score than the reference-cocrystallised compound. The GROningen MAchine for Chemical Simulations (GROMACS) package guided molecular dynamics (MD) results determined their binding mode and affirmed stable root mean square deviation. Furthermore, these compounds have preserved their key interactions with the residues Glu885, Glu917, Cys919 and Asp1046. The obtained findings deem that the seven compounds could act as novel anti-angiogenic inhibitors and may further assist as the prototype in designing and developing new inhibitors.


Assuntos
Descoberta de Drogas , Modelos Moleculares , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estabilidade Proteica , Curva ROC , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
17.
Oxid Med Cell Longev ; 2019: 5189490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089409

RESUMO

Breast cancer (BC) is the leading cause of death among women worldwide devoid of effective treatment. It is therefore important to develop agents that can reverse, reduce, or slow the growth of BC. The use of natural products as chemopreventive agents provides enormous advantages. The aim of the current investigation is to determine the efficacy of the phytochemicals against BC along with the approved drugs to screen the most desirable and effective phytocompound. In the current study, 36 phytochemicals have been evaluated against aromatase to identify the potential candidate drug along with the approved drugs employing the Cdocker module accessible on the Discovery Studio (DS) v4.5 and thereafter analysing the stability of the protein ligand complex using GROningen MAchine for Chemical Simulations v5.0.6 (GROMACS). Additionally, these compounds were assessed for the inhibitory features employing the structure-based pharmacophore (SBP). The Cdocker protocol available with the DS has computed higher dock scores for the phytochemicals complemented by lower binding energies. The top-ranked compounds that have anchored with key residues located at the binding pocket of the protein were subjected to molecular dynamics (MD) simulations employing GROMACS. The resultant findings reveal the stability of the protein backbone and further guide to comprehend on the involvement of key residues Phe134, Val370, and Met374 that mechanistically inhibit BC. Among 36 compounds, curcumin, capsaicin, rosmarinic acid, and 6-shogaol have emerged as promising phytochemicals conferred with the highest Cdocker interaction energy, key residue interactions, stable MD results than reference drugs, and imbibing the key inhibitory features. Taken together, the current study illuminates the use of natural compounds as potential drugs against BC. Additionally, these compounds could also serve as scaffolds in designing and development of new drugs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Hormônios/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Domínio Catalítico , Feminino , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Relação Estrutura-Atividade , Termodinâmica
18.
J Clin Med ; 8(2)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754680

RESUMO

Dihydrofolate reductase (DHFR) is an essential cellular enzyme and thereby catalyzes thereduction of dihydrofolate to tetrahydrofolate (THF). In cancer medication, inhibition of humanDHFR (hDHFR) remains a promising strategy, as it depletes THF and slows DNA synthesis and cellproliferation. In the current study, ligand-based pharmacophore modeling identified and evaluatedthe critical chemical features of hDHFR inhibitors. A pharmacophore model (Hypo1) was generatedfrom known inhibitors of DHFR with a correlation coefficient (0.94), root mean square (RMS)deviation (0.99), and total cost value (125.28). Hypo1 was comprised of four chemical features,including two hydrogen bond donors (HDB), one hydrogen bond acceptor (HBA), and onehydrophobic (HYP). Hypo1 was validated using Fischer's randomization, test set, and decoy setvalidations, employed as a 3D query in a virtual screening at Maybridge, Chembridge, Asinex,National Cancer Institute (NCI), and Zinc databases. Hypo1-retrieved compounds were filtered byan absorption, distribution, metabolism, excretion, and toxicity (ADMET) assessment test andLipinski's rule of five, where the drug-like hit compounds were identified. The hit compounds weredocked in the active site of hDHFR and compounds with Goldfitness score was greater than 44.67(docking score for the reference compound), clustering analysis, and hydrogen bond interactionswere identified. Furthermore, molecular dynamics (MD) simulation identified three compounds asthe best inhibitors of hDHFR with the lowest root mean square deviation (1.2 Å to 1.8 Å), hydrogenbond interactions with hDHFR, and low binding free energy (-127 kJ/mol to -178 kJ/mol). Finally,the toxicity prediction by computer (TOPKAT) affirmed the safety of the novel inhibitors of hDHFRin human body. Overall, we recommend novel hit compounds of hDHFR for cancer and rheumatoidarthritis chemotherapeutics.

19.
IEEE/ACM Trans Comput Biol Bioinform ; 16(5): 1663-1674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30334765

RESUMO

Aromatase inhibitors with an $\mathrm{IC}_{50}$ IC 50 value ranging from 1.4 to 49.7 µM are known to act as antiepileptic drugs besides being potential breast cancer inhibitors. The aim of the present study is to identify novel antiepileptic aromatase inhibitors with higher activity exploiting the ligand-based pharmacophore approach utilizing the experimentally known inhibitors. The resultant Hypo1 consists of four features and was further validated by using three different strategies. Hypo1 was allowed to screen different databases to identify lead molecules and were further subjected to Lipinski's Rule of Five and ADMET to establish their drug-like properties. Consequently, the obtained 68-screened molecules were subjected to molecular docking by GOLD v5.2.2. Furthermore, the compounds with the highest dock scores were assessed for molecular interactions. Later, the MD simulation was applied to evaluate the protein backbone stabilities and binding energies adapting GROMACS v5.0.6 and MM/PBSA which was followed by the density functional theory (DFT), to analyze their orbital energies, and further the energy gap between them. Eventually, the number of Hit molecules was culled to three projecting Hit1, Hit2, and Hit3 as the potential lead compounds based on their highest dock scores, hydrogen bond interaction, lowest energy gap, and the least binding energies and stable MD results.


Assuntos
Anticonvulsivantes , Antineoplásicos , Inibidores da Aromatase , Desenho de Fármacos , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/metabolismo , Neoplasias da Mama , Biologia Computacional , Feminino , Humanos , Simulação de Acoplamento Molecular
20.
J Mol Graph Model ; 88: 92-103, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30665156

RESUMO

Prolyl oligopeptidase (POP) is a potential therapeutic target for treatment of several neurological disorders and α-synucleinopathies including Parkinson's disease. Most of the known POP inhibitors failed in the clinical trials due to poor pharmacokinetic properties and blood-brain impermeability. Therefore, a training set of 30 structurally diverse compounds with a wide range of inhibitory activity against POP was used to generate a quantitative pharmacophore model, Hypo 3, to identify potential POP inhibitors with desirable drug-like properties. Validations through test set, cost analysis, and Fisher's randomization methods proved that Hypo 3 accurately predicted the known inhibitors among inactive compounds. Hypo 3 was employed as 3D query for virtual screening on an in-house drug-like chemical database containing compounds with good brain permeability and ADMET parameters. Database screening with Hypo 3 resulted in 99 compounds that were narrowed down to 21 compounds through molecular docking. Among them, five compounds were identified in our earlier studies, while two compounds showed in vitro POP inhibition. The current study proposed new 16 virtually screened compounds as potential inhibitors against POP that possess Gold docking score in the range of 64.61-75.74 and Chemscore of -32.25 to -38.35. Furthermore, the top scoring four hit compounds were subjected to molecular dynamics simulations to reveal their appropriate binding modes and assessing binding free energies. The hit compounds interacted with POP effectively via hydrogen bonds with important active site residues along with hydrophobic interactions. Moreover, the hit compounds had key inter-molecular interactions and better binding free energies as compared to the reference inhibitor. A potential new hydrogen bond interaction was discovered between Hit 2 with the Arg252 residue of POP. To conclude, we propose four hit compounds with new structural scaffolds against POP for the lead development of POP-based therapeutics for neurological disorders.


Assuntos
Desenho de Fármacos , Serina Endopeptidases/química , Inibidores de Serina Proteinase/química , Sítios de Ligação , Bases de Dados de Compostos Químicos , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Prolil Oligopeptidases , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Inibidores de Serina Proteinase/farmacologia , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA