Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027452

RESUMO

Alzheimer's disease (AD) is characterized by complex, multifactorial neuropathology, suggesting that small molecules targeting multiple neuropathological factors are likely required to successfully impact clinical progression. Acid sphingomyelinase (ASM) activation has been recognized as an important contributor to these neuropathological features in AD, leading to the concept of using ASM inhibitors for the treatment of this disorder. Here we report the identification of KARI 201, a direct ASM inhibitor evaluated for AD treatment. KARI 201 exhibits highly selective inhibition effects on ASM, with excellent pharmacokinetic properties, especially with regard to brain distribution. Unexpectedly, we found another role of KARI 201 as a ghrelin receptor agonist, which also has therapeutic potential for AD treatment. This dual role of KARI 201 in neurons efficiently rescued neuropathological features in AD mice, including amyloid beta deposition, autophagy dysfunction, neuroinflammation, synaptic loss, and decreased hippocampal neurogenesis and synaptic plasticity, leading to an improvement in memory function. Our data highlight the possibility of potential clinical application of KARI 201 as an innovative and multifaceted drug for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Neuropatologia/métodos , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Memória , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de Grelina/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
2.
Small ; 20(2): e2305143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670210

RESUMO

Molybdenum disulfide (MoS2 ), a metal dichalcogenide, is a promising channel material for highly integrated scalable transistors. However, intrinsic donor defect states, such as sulfur vacancies (Vs ), can degrade the channel properties and lead to undesired n-doping. A method for healing the donor defect states in monolayer MoS2 is proposed using oxygen plasma, with an aluminum oxide (Al2 O3 ) barrier layer that protects the MoS2 channel from damage by plasma treatment. Successful healing of donor defect states in MoS2 by oxygen atoms, even in the presence of an Al2 O3 barrier layer, is confirmed by X-ray photoelectron spectroscopy, photoluminescence, and Raman spectroscopy. Despite the decrease in 2D sheet carrier concentration (Δn2D = -3.82×1012 cm-2 ), the proposed approach increases the on-current and mobility by 18% and 44% under optimal conditions, respectively. Metal-insulator transition occurs at electron concentrations of 5.7×1012 cm-2 and reflects improved channel quality. Finally, the activation energy (Ea ) reduces at all the gate voltages (VG ) owing to a decrease in Vs , which act as a localized state after the oxygen plasma treatment. This study demonstrates the feasibility of plasma-assisted healing of defects in 2D materials and electrical property enhancement and paves the way for the development of next-generation electronic devices.

3.
J Insect Sci ; 24(4)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023177

RESUMO

This study explores the food transport efficiency (E) in a termite tunnel consisting of a main tunnel and a 2-segment loop tunnel through a model simulation. Simulated termites navigate between the main and loop tunnels through branching nodes (a, b, c, d) with associated probabilities (P1, P2, P3, P4). The loop tunnel locations (δ) are considered: near the nest (δ = 1), at the center of the main tunnel (δ = 2), and close to the food site (δ = 3). The results reveal that for δ = 1, paths such as a → d → b → c and c → d → b → a exhibited high E values. Conversely, for δ = 2, P3 and P4 demonstrate elevated E values ranging from 0.4 to 0.6. For δ = 3, paths like c → d or c → b display high E values, emphasizing the significance of in-loop separation tunnels (characterized by P3 and P4) in alleviating traffic congestion. Partial rank correlation validates that P1 and P2 minimally influence E, while P3 and P4 significantly negatively impact E, regardless of δ. However, for δ = 2, the influence of P3 and P4 is notably reduced due to the positional symmetry of the loop tunnel. In the discussion, we address model limitations and propose strategies to overcome them. Additionally, we outline potential experimental validations to ensure a comprehensive understanding of the dynamics governing termite food transport within tunnels.


Assuntos
Comportamento Alimentar , Isópteros , Animais , Isópteros/fisiologia , Simulação por Computador , Modelos Biológicos
4.
Nano Lett ; 23(22): 10164-10170, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934978

RESUMO

Formation of charged trions is detrimental to the luminescence quantum efficiency of colloidal quantum dot (QD) thin films as they predominantly undergo nonradiative recombination. In this regard, control of charged trion formation is of interest for both fundamental characterization of the quasi-particles and performance optimization. Using CdSe/CdS QDs as a prototypical material system, here we demonstrate a metal-oxide-semiconductor capacitor based on QD thin films for studying the background charge effect on the luminescence efficiency and lifetime. The concentration ratio of the charged and neutral quasiparticles in the QDs is reversibly controlled by applying a gate voltage, while simultaneous steady-state and time-resolved photoluminescence measurements are performed. Notably, the photoluminescence intensity is modulated by up to 2 orders of magnitude with a corresponding change in the effective lifetime. In addition, chip-scale modulation of brightness is demonstrated, where the photoluminescence is effectively turned on and off by the gate, highlighting potential applications in voltage-controlled electrochromics.

5.
Small ; 19(47): e2300568, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37518679

RESUMO

Despite the remarkable advances made in the development of 2D perovskites suitable for various high-performance devices, the development of sub-30 nm nanopatterns of 2D perovskites with anisotropic photoelectronic properties remains challenging. Herein, a simple but robust route for fabricating sub-30 nm 1D nanopatterns of 2D perovskites over a large area is presented. This method is based on nanoimprinting a thin precursor film of a 2D perovskite with a topographically pre-patterned hard poly(dimethylsiloxane) mold replicated from a block copolymer nanopattern consisting of guided self-assembled monolayered in-plane cylinders. 1D nanopatterns of various 2D perovskites (A'2 MAn -1 Pbn X3 n +1 ,A' = BA, PEA, X = Br, I) are developed; their enhanced photoluminescence (PL) quantum yields are approximately four times greater than those of the corresponding control flat films. Anisotropic photocurrent is observed because 2D perovskite nanocrystals are embedded in a topological 1D nanopattern. Furthermore, this 1D metal-coated nanopattern of a 2D perovskite is employed as a color conversion optical polarizer, in which polarized PL is developed. This is due to its capability of polarization of an incident light arising from the sub-30 nm line pattern, as well as the PL of the confined 2D perovskite nanocrystals in the pattern.

6.
Org Biomol Chem ; 21(3): 585-589, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36541823

RESUMO

The synthesis of unsymmetrical dithioacetals based on gold catalysis is described. Although many approaches to the preparation of symmetrical dithioacetals have been developed, the methods to access unsymmetrical ones remain limited. In this regard, we report a mild synthetic method with a broad substrate scope. Screening of various gold catalysts identified a catalyst, which allows the hydrothiolation of both activated and unactivated vinyl sulfides with high efficiency. Moreover, the reaction displays broad compatibility for both aryl and aliphatic thiols.


Assuntos
Compostos de Sulfidrila , Sulfetos , Catálise
7.
J Insect Sci ; 23(2)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947034

RESUMO

Termites are believed to have evolved in a way that optimizes their foraging efficiency, which involves both searching for food and transporting it efficiently. Although the search efficiency has been well-studied through tunnel pattern analysis, transport efficiency has received limited attention due to the challenges of directly observing behavior that is highly influenced by environmental conditions. In this study, we introduce an individual-based model to simulate transport behavior and examine transport efficiency (E) by considering the tunnel surface irregularities and curvature, which are critical environmental factors. The model is characterized by four control variables: tunnel curvature (k1), termite stopping time at irregularity sites (k2), irregularity distribution (k3), and irregularity density (k4). The simulation results indicate that as k1 increases, E decreases, while k3 has little impact on E. The impact of k4 on E is decisive; when k4 ≤ 6, an increase in k4 results in increased traffic jam frequency and a faster reduction in E. However, when k4 > 6, the jamming frequency is not significantly affected, reducing the decrease in E. k2 strongly contributes to reducing E without significantly affecting the frequency. In the discussion section, we explore potential mechanisms that termites use to maintain transport efficiency in heterogeneous soils, and discuss how to improve the model to better reflect real-termite systems.


Assuntos
Isópteros , Animais , Comportamento Animal , Solo , Alimentos
8.
Sci Technol Adv Mater ; 24(1): 2156256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632347

RESUMO

For changing environmental circumstances, interactive structural color (SC) observation is a promising strategy to store and express external information. SCs based on self-assembled block copolymer (BCP) photonic crystals have been a research focus due to their facile and diverse nanostructures relying on the volume ratio of blocks. Their unique nano-architectonics can reflect incident light due to constructive interference of the two different dielectric constituents. Their excellent ability to change nano-architectonics in response to external stimuli (i.e. humidity, temperature, pH, and mechanical force) allows for a programmable and stimuli-interactive BCP SC display. In this review, recent advances in programmable and stimuli-interactive SC displays with the 1-dimensional self-assembled BCP nano-architectonics are comprehensively discussed. First, this review focuses on the development of programmable BCP SCs that can store various information. Second, stimuli-interactive BCP SCs capable of responding reversibly to external stimuli are also addressed. Particularly, reversible BCP SC changes are suitable for rewritable displays and emerging human-interactive BCP SC displays that detect various human information through changes in electric signals with the simultaneous alteration of the BCP SCs. Based on previously reported literature, the current challenges in this research field are further discussed, and the perspective for future development is presented in terms of material, nano-architectonics, and process.

9.
Small ; 18(6): e2106035, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923744

RESUMO

Transition metal dichalcogenide (TMD) nanosheets exfoliated in the liquid phase are of significant interest owing to their potential for scalable and flexible photoelectronic applications. Although various dispersants such as surfactants, oligomers, and polymers are used to obtain highly exfoliated TMD nanosheets, most of them are electrically insulating and need to be removed; otherwise, the photoelectric properties of the TMD nanosheets degrade. Here, inorganic halide perovskite nanocrystals (NCs) of CsPbX3  (X = Cl, Br, or I) are presented as non-destructive dispersants capable of dispersing TMD nanosheets in the liquid phase and enhancing the photodetection properties of the nanosheets, thus eliminating the need to remove the dispersant. MoSe2 nanosheets dispersed in the liquid phase are adsorbed with CsPbCl3  NCs. The CsPbCl3 nanocrystals on MoSe2 efficiently withdraw electrons from the nanosheets, and suppress the dark current of the MoSe2 nanosheets, leading to flexible near-infrared MoSe2  photodetectors with a high ON/OFF photocurrent ratio and detectivity. Moreover, lanthanide ion-doped CsPbCl3  NCs enhance the ON/OFF current ratio to >106 . Meanwhile, the dispersion stability of the MoSe2  nanosheets exfoliated with the perovskite NCs is sufficiently high.

10.
Org Biomol Chem ; 20(37): 7499-7502, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106773

RESUMO

The synthesis of benzothiophenes through electrosynthesis under oxidant- and metal-free conditions has been discovered. Electrolysis of symmetrical 2-alkenylaryl disulfides using an undivided cell leads to the formation of the corresponding benzothiophenes in good to moderate yields with good functional group tolerance. The usefulness of this methodology was further investigated with a scale-up experiment, which delivered a similar result to that of the small scale reaction. Several mechanistic investigations including DFT calculations were carried out to elucidate the reaction mechanism.


Assuntos
Dissulfetos , Tiofenos , Catálise , Oxidantes
11.
Nano Lett ; 20(8): 5741-5748, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32589036

RESUMO

Band engineering using the van der Waals heterostructure of two-dimensional materials allows for the realization of high-performance optoelectronic devices by providing an ultrathin and uniform PN junction with sharp band edges. In this study, a highly sensitive photodetector based on the van der Waals heterostructure of WSe2 and MoS2 was developed. The MoS2 was utilized as the channel for a phototransistor, whereas the WSe2-MoS2 PN junction in the out-of-plane orientation was utilized as a charge transfer layer. The vertical built-in electric field in the PN junction separated the photogenerated carriers, thus leading to a high photoconductive gain of 106. The proposed phototransistor exhibited an excellent performance, namely, a high photoresponsivity of 2700 A/W, specific detectivity of 5 × 1011 Jones, and response time of 17 ms. The proposed scheme in conjunction with the large-area synthesis technology of two-dimensional materials contributes significantly to practical photodetector applications.

12.
Entropy (Basel) ; 23(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919528

RESUMO

Branch length similarity (BLS) entropy is defined in a network consisting of a single node and branches. In this study, we mapped the binary time-series signal to the circumference of the time circle so that the BLS entropy can be calculated for the binary time-series. We obtained the BLS entropy values for "1" signals on the time circle. The set of values are the BLS entropy profile. We selected the local maximum (minimum) point, slope, and inflection point of the entropy profile as the characteristic features of the binary time-series and investigated and explored their significance. The local maximum (minimum) point indicates the time at which the rate of change in the signal density becomes zero. The slope and inflection points correspond to the degree of change in the signal density and the time at which the signal density changes occur, respectively. Moreover, we show that the characteristic features can be widely used in binary time-series analysis by characterizing the movement trajectory of Caenorhabditis elegans. We also mention the problems that need to be explored mathematically in relation to the features and propose candidates for additional features based on the BLS entropy profile.

13.
Entropy (Basel) ; 22(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33286830

RESUMO

We propose a new measure (Γ) to quantify the degree of self-similarity of a shape using branch length similarity (BLS) entropy which is defined on a simple network consisting of a single node and its branches. To investigate the properties of this measure, we computed the Γ values for 70 object groups (20 shapes in each group) in the MPEG-7 shape database and performed grouping on the values. With relatively high Γ values, identical groups had visually similar shapes. On the other hand, the identical groups with low Γ values had visually different shapes. However, the aspect of topological similarity of the shapes also warrants consideration. The shapes of statistically different groups exhibited significant visual difference from each other. Also, in order to show that the Γ can have a wide variety of applicability when properly used with other variables, we showed that the finger gestures in the (Γ, Z) space are successfully classified. Here, the Z means a correlation coefficient value between entropy profiles for gesture shapes. As shown in the applications, Γ has a strong advantage over conventional geometric measures in that it captures the geometrical and topological properties of a shape together. If we could define the BLS entropy for color, Γ could be used to characterize images expressed in RGB. We briefly discussed the problems to be solved before the applicability of Γ can be expanded to various fields.

14.
Angew Chem Int Ed Engl ; 59(29): 11886-11891, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32329937

RESUMO

Oxidative [3+3] cycloadditions offer an efficient route for six-membered-ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π-electrocyclization leading to the synthesis of dihydropyrano[4,3-b]indoles and 2,3-dihydrofurans. The radical-radical cross-coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O2 allows for mild reaction conditions for the synthesis of structurally complex heterocycles.

15.
Small ; 15(21): e1900219, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30946524

RESUMO

All-inorganic cesium lead triiodide (CsPbI3 ) perovskite is considered a promising solution-processable semiconductor for highly stable optoelectronic and photovoltaic applications. However, despite its excellent optoelectronic properties, the phase instability of CsPbI3 poses a critical hurdle for practical application. In this study, a novel stain-mediated phase stabilization strategy is demonstrated to significantly enhance the phase stability of cubic α-phase CsPbI3 . Careful control of the degree of spatial confinement induced by anodized aluminum oxide (AAO) templates with varying pore sizes leads to effective manipulation of the phase stability of α-CsPbI3 . The Williamson-Hall method in conjunction with density functional theory calculations clearly confirms that the strain imposed on the perovskite lattice when confined in vertically aligned nanopores can alter the formation energy of the system, stabilizing α-CsPbI3 at room temperature. Finally, the CsPbI3 grown inside nanoporous AAO templates exhibits exceptional phase stability over three months under ambient conditions, in which the resulting light-emitting diode reveals a natural red color emission with very narrow bandwidth (full width at half maximum of 33 nm) at 702 nm. The universally applicable template-based stabilization strategy can give in-depth insights on the strain-mediated phase transition mechanism in all-inorganic perovskites.

16.
Small ; 14(22): e1704024, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29687614

RESUMO

Epitaxial crystallization of thin poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) films is important for the full utilization of their ferroelectric properties. Epitaxy can offer a route for maximizing the degree of crystallinity with the effective orientation of the crystals with respect to the electric field. Despite various approaches for the epitaxial control of the crystalline structure of PVDF-TrFE, its epitaxy on a semiconductor is yet to be accomplished. Herein, the epitaxial growth of PVDF-TrFE crystals on a single-crystalline organic semiconductor rubrene grown via physical vapor deposition is presented. The epitaxy results in polymer crystals globally ordered with specific crystal orientations dictated by the epitaxial relation between the polymer and rubrene crystal. The lattice matching between the c-axis of PVDF-TrFE crystals and the (210) plane of orthorhombic rubrene crystals develops two degenerate crystal orientations of the PVDF-TrFE crystalline lamellae aligned nearly perpendicular to each other. Thin PVDF-TrFE films with epitaxially grown crystals are incorporated into metal/ferroelectric polymer/metal and metal/ferroelectric polymer/semiconductor/metal capacitors, which exhibit excellent nonvolatile polarization and capacitance behavior, respectively. Furthermore, combined with a printing technique for micropatterning rubrene single crystals, the epitaxy of a PVDF-TrFE film is formed selectively on the patterned rubrene with characteristic epitaxial crystal orientation over a large area.

17.
J Nanosci Nanotechnol ; 18(7): 5013-5019, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442687

RESUMO

A crystalline silicon (c-Si) local-back-contact (LBC) solar cell for which a laser-condition-optimized surface-recombination velocity (SRV), a contact resistance (Rc), and local back surface fields (LBSFs) were utilized is reported. The effect of the laser condition on the rear-side electrical properties of the laser-fired LBC solar cell was studied. The Nd:YAG-laser (1064-nm wavelength) power and frequency were varied to obtain LBSF values with a lower contact resistance. A 10-kHz laser power of 44 mW resulted in an Rc of 0.125 ohms with an LBSF thickness of 2.09 µm and a higher open-circuit voltage (VOC) of 642 mV.

18.
Small ; 13(20)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371305

RESUMO

Nonvolatile field-effect transistor (FET) memories containing transition metal dichalcogenide (TMD) nanosheets have been recently developed with great interest by utilizing some of the intriguing photoelectronic properties of TMDs. The TMD nanosheets are, however, employed as semiconducting channels in most of the memories, and only a few works address their function as floating gates. Here, a floating-gate organic-FET memory with an all-in-one floating-gate/tunneling layer of the solution-processed TMD nanosheets is demonstrated. Molybdenum disulfide (MoS2 ) is efficiently liquid-exfoliated by amine-terminated polystyrene with a controlled amount of MoS2 nanosheets in an all-in-one floating-gate/tunneling layer, allowing for systematic investigation of concentration-dependent charge-trapping and detrapping properties of MoS2 nanosheets. At an optimized condition, the nonvolatile memory exhibits memory performances with an ON/OFF ratio greater than 104 , a program/erase endurance cycle over 400 times, and data retention longer than 7 × 103 s. All-in-one floating-gate/tunneling layers containing molybdenum diselenide and tungsten disulfide are also developed. Furthermore, a mechanically-flexible TMD memory on a plastic substrate shows a performance comparable with that on a hard substrate, and the memory properties are rarely altered after outer-bending events over 500 times at the bending radius of 4.0 mm.

19.
Inorg Chem ; 56(11): 6695-6705, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28485587

RESUMO

The complexity of Alzheimer's disease (AD) stems from the inter-relation of multiple pathological factors upon initiation and progression of the disease. To identify the involvement of metal-bound amyloid-ß (metal-Aß) aggregation in AD pathology, among the pathogenic features found in the AD-affected brain, small molecules as chemical tools capable of controlling metal-Aß aggregation were developed. Herein, we report a new class of 2,2'-bipyridine (bpy) derivatives (1-4) rationally designed to be chemical modulators toward metal-Aß aggregation over metal-free Aß analogue. The bpy derivatives were constructed through a rational design strategy employing straightforward structural variations onto the backbone of a metal chelator, bpy: (i) incorporation of an Aß interacting moiety; (ii) introduction of a methyl group at different positions. The newly prepared bpy derivatives were observed to bind to metal ions [i.e., Cu(II) and Zn(II)] and interact with metal-Aß over metal-free Aß to varying degrees. Distinguishable from bpy, the bpy derivatives (1-3) were indicated to noticeably modulate the aggregation pathways of Cu(II)-Aß and Zn(II)-Aß over metal-free Aß. Overall, our studies of the bpy derivatives demonstrate that the alteration of metal binding properties as well as the installation of an Aß interacting capability onto a metal chelating framework, devised via the rational structure-based design, were able to achieve evident modulating reactivity against metal-Aß aggregation. Obviating the need for complicated structures, our design approach, presented in this work, could be appropriately utilized for inventing small molecules as chemical tools for studying desired metal-related targets in biological systems.


Assuntos
2,2'-Dipiridil/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Cobre/farmacologia , Desenho de Fármacos , Zinco/farmacologia , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/química , Peptídeos beta-Amiloides/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Zinco/química
20.
Sensors (Basel) ; 17(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120363

RESUMO

This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm² having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 µW and 0.48 W/m², respectively, when the device was pushed in the vertical direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA