Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783375

RESUMO

The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.

2.
Carcinogenesis ; 41(11): 1565-1575, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32157295

RESUMO

Space radiation is characterized by high-linear energy transfer (LET) ionizing radiation. The relationships between the early biological effects of space radiation and the probability of cancer in humans are poorly understood. Bcl2 not only functions as a potent antiapoptotic molecule but also as an oncogenic protein that induces DNA replication stress. To test the role and mechanism of Bcl2 in high-LET space radiation-induced lung carcinogenesis, we created lung-targeting Bcl2 transgenic C57BL/6 mice using the CC10 promoter to drive Bcl2 expression selectively in lung tissues. Intriguingly, lung-targeting transgenic Bcl2 inhibits ribonucleotide reductase activity, reduces dNTP pool size and retards DNA replication fork progression in mouse bronchial epithelial cells. After exposure of mice to space radiation derived from 56iron, 28silicon or protons, the incidence of lung cancer was significantly higher in lung-targeting Bcl2 transgenic mice than in wild-type mice, indicating that Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. The findings provide some evidence for the relative effectiveness of space radiation and Bcl-2 at inducing lung cancer in mice.


Assuntos
Carcinogênese/patologia , Replicação do DNA , Neoplasias Pulmonares/patologia , Neoplasias Induzidas por Radiação/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Radiação Ionizante , Estresse Fisiológico , Animais , Carcinogênese/metabolismo , Carcinogênese/efeitos da radiação , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética
3.
Mol Cancer ; 19(1): 93, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434536

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

4.
Mol Cancer ; 18(1): 85, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971271

RESUMO

BACKGROUND: Lung cancer patients with KRAS mutation(s) have a poor prognosis due in part to the development of resistance to currently available therapeutic interventions. Development of a new class of anticancer agents that directly targets KRAS may provide a more attractive option for the treatment of KRAS-mutant lung cancer. RESULTS: Here we identified a small molecule KRAS agonist, KRA-533, that binds the GTP/GDP-binding pocket of KRAS. In vitro GDP/GTP exchange assay reveals that KRA-533 activates KRAS by preventing the cleavage of GTP into GDP, leading to the accumulation of GTP-KRAS, an active form of KRAS. Treatment of human lung cancer cells with KRA-533 resulted in increased KRAS activity and suppression of cell growth. Lung cancer cell lines with KRAS mutation were relatively more sensitive to KRA-533 than cell lines without KRAS mutation. Mutating one of the hydrogen-bonds among the KRA-533 binding amino acids in KRAS (mutant K117A) resulted in failure of KRAS to bind KRA-533. KRA-533 had no effect on the activity of K117A mutant KRAS, suggesting that KRA-533 binding to K117 is required for KRA-533 to enhance KRAS activity. Intriguingly, KRA-533-mediated KRAS activation not only promoted apoptosis but also autophagic cell death. In mutant KRAS lung cancer xenografts and genetically engineered mutant KRAS-driven lung cancer models, KRA-533 suppressed malignant growth without significant toxicity to normal tissues. CONCLUSIONS: The development of this KRAS agonist as a new class of anticancer drug offers a potentially effective strategy for the treatment of lung cancer with KRAS mutation and/or mutant KRAS-driven lung cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/genética , Benzoatos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/química , Autofagia/efeitos dos fármacos , Benzoatos/química , Sítios de Ligação , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Camundongos Transgênicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas p21(ras)/agonistas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nucleic Acids Res ; 43(2): 960-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25567982

RESUMO

High-linear energy transfer ionizing radiation, derived from high charge (Z) and energy (E) (HZE) particles, induces clustered/complex DNA double-strand breaks (DSBs) that include small DNA fragments, which are not repaired by the non-homologous end-joining (NHEJ) pathway. The homologous recombination (HR) DNA repair pathway plays a major role in repairing DSBs induced by HZE particles. The Mre11 complex (Mre11/Rad50/NBS1)-mediated resection of DSB ends is a required step in preparing for DSB repair via the HR DNA repair pathway. Here we found that expression of Bcl2 results in decreased HR activity and retards the repair of DSBs induced by HZE particles (i.e. (56)iron and (28)silicon) by inhibiting Mre11 complex activity. Exposure of cells to (56)iron or (28)silicon promotes Bcl2 to interact with Mre11 via the BH1 and BH4 domains. Purified Bcl2 protein directly suppresses Mre11 complex-mediated DNA resection in vitro. Expression of Bcl2 reduces the ability of Mre11 to bind DNA following exposure of cells to HZE particles. Our findings suggest that, after cellular exposure to HZE particles, Bcl2 may inhibit Mre11 complex-mediated DNA resection leading to suppression of the HR-mediated DSB repair in surviving cells, which may potentially contribute to tumor development.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Histonas/análise , Recombinação Homóloga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Transferência Linear de Energia , Proteína Homóloga a MRE11 , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/química , Radiação Ionizante , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
7.
Acta Biochim Biophys Sin (Shanghai) ; 48(1): 11-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26578706

RESUMO

Oncogenic mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) occur in 15%-30% of non-small cell lung cancer (NSCLC). However, despite decades of intensive research, there is still no direct KRAS inhibitor with clinically proven efficacy. Considering its association with poor treatment response and prognosis of lung cancer, developing an effective inhibitory approach is urgently needed. Here, we review different strategies currently being explored to target KRAS-mutant NSCLC, discuss opportunities and challenges, and also propose some novel methods and concepts with the promise of clinical application.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Genes ras , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Camundongos , Mutação , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Resultado do Tratamento
8.
J Biol Chem ; 289(44): 30635-30644, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25210033

RESUMO

High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Animais , Morte Celular , Linhagem Celular , Fragmentação do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Transferência Linear de Energia , Proteína Homóloga a MRE11 , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/metabolismo , Regulação para Cima , Raios X
9.
Cancer ; 120(21): 3302-3310, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24989479

RESUMO

BACKGROUND: It has been demonstrated that regular exercise improves the quality of life in patients undergoing treatment for lung cancer and has been associated with reductions in cancer-specific mortality in patients with colon and breast cancer. The direct effects of cardiovascular exercise on lung cancer tumor biology, however, remain unknown. The authors evaluated the effects of cardiovascular exercise in a mouse model of lung adenocarcinoma. METHODS: Luciferase-tagged A549 lung adenocarcinoma cells were injected through the tail vein of nude male mice. Then, the mice underwent weekly bioluminescent imaging until lung tumors were clearly identified. After lung tumors were identified, the mice were randomized to daily wheel running versus no wheel running, and they were imaged weekly. After 4 weeks, all mice were killed, and the lung tumors were harvested. Western blot and immunohistochemical analyses were conducted on tumor tissues to identify potential differences in protein expression levels in exercising mice versus sedentary mice. RESULTS: Lung tumors in exercising mice grew significantly more slowly relative to sedentary mice. There was no change in the development of metastatic lesions between the 2 groups. Protein analysis by Western blot or immunohistochemical analysis demonstrated increased p53 protein levels in exercising mice relative to sedentary mice as well as increased mediators of apoptosis, including Bax and active caspase 3, in tumor tissues. In both groups of mice, no normal tissue toxicity was observed in other organs. CONCLUSIONS: Daily cardiovascular exercise appears to mitigate the growth of lung adenocarcinoma tumors, possibly by activation of the p53 tumor suppressor function and increased apoptosis.


Assuntos
Exercício Físico , Neoplasias Pulmonares/terapia , Atividade Motora/fisiologia , Condicionamento Físico Animal , Animais , Apoptose/genética , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
10.
Theranostics ; 11(17): 8500-8516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373755

RESUMO

Rationale: Bak is a major proapoptotic Bcl2 family member and a required molecule for apoptotic cell death. High levels of endogenous Bak were observed in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cell lines. Increased Bak expression was correlated with poor prognosis of NSCLC patients, suggesting that Bak protein is an attractive target for lung cancer therapy. The BH3 domain functions as death domain and is required for Bak to initiate apoptotic cell death. Thus, the BH3 domain is attractive target for discovery of Bak agonist. Methods: The BH3 death domain binding pocket (aa75-88) of Bak was chosen as a docking site for screening of small molecule Bak activators using the UCSF DOCK 6.1 program suite and the NCI chemical library (300,000 small molecules) database. The top 500 compounds determined to have the highest affinity for the BH3 domain were obtained from the NCI and tested for cytotoxicity for further screening. We identified a small molecule Bak activator BKA-073 as the lead compound. The binding affinity of BKA-073 with Bak protein was analyzed by isothermal titration calorimetry (ITC) assay. BKA-073-mediated Bak activation via oligomerization was analyzed by a cross-linking with Bis (maleimido) hexane (BMH). Sensitivity of BKA-073 to lung cancer cells in vitro was evaluated by dynamic BH3 profiling (DBP) and apoptotic cell death assay. The potency of BKA-073 alone or in combination with radiotherapy or Bcl2 inhibitor was evaluated in animal models. Results: We found that BKA-073 binds Bak at BH3 domain with high affinity and selectivity. BKA-073/Bak binding promotes Bak oligomerization and mitochondrial priming that activates its proapoptotic function. BKA-073 potently suppresses tumor growth without significant normal tissue toxicity in small cell lung cancer (SCLC) and NSCLC xenografts, patient-derived xenografts, and genetically engineered mouse models of mutant KRAS-driven cancer. Bak accumulates in radioresistant lung cancer cells and BKA-073 reverses radioresistance. Combination of BKA-073 with Bcl-2 inhibitor venetoclax exhibits strong synergy against lung cancer in vivo. Conclusions: Development of small molecule Bak activator may provide a new class of anticancer agents to treat lung cancer.


Assuntos
Neoplasias Pulmonares/terapia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Oncogene ; 39(25): 4798-4813, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32457468

RESUMO

Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor outcomes associated with resistance to cisplatin-based chemotherapy. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2), which silences transcription through trimethylation of histone H3 lysine 27 (H3K27me3) and has emerged as an important therapeutic target with inhibitors targeting its methyltransferase activity under clinical investigation. Here, we show that EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair (NER) and govern cisplatin resistance in SCLC. Using a synthetic lethality screen, we identified important regulators of cisplatin resistance in SCLC cells, including EZH2. EZH2 depletion causes cellular cisplatin and UV hypersensitivity in an epistatic manner with DDB1-DDB2. EZH2 complexes with DDB1-DDB2 and promotes DDB2 stability by impairing its ubiquitination independent of methyltransferase activity or PRC2, thereby facilitating DDB2 localization to cyclobutane pyrimidine dimer crosslinks to govern their repair. Furthermore, targeting EZH2 for depletion with DZNep strongly sensitizes SCLC cells and tumors to cisplatin. Our findings reveal a non-catalytic and PRC2-independent function for EZH2 in promoting NER through DDB2 stabilization, suggesting a rationale for targeting EZH2 beyond its catalytic activity for overcoming cisplatin resistance in SCLC.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , DNA/genética , DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Complexo Repressor Polycomb 2/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo
12.
Mol Immunol ; 45(2): 575-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17675236

RESUMO

Xenotransplantation is a promising alternative to overcome donor shortage in transplantation. CD40 molecule plays an important role in the interaction of T cells with antigen-presenting cells and in the activation of vascular endothelial cells. We investigated whether the xenogeneic interaction between human CD40L (hCD40L) on T cells and porcine endothelial CD40 (pCD40) can activate porcine endothelial cells (PECs). The interaction between hCD40L and pCD40 induced the expression of chemokines on PECs as well as MHC and adhesion molecules. Furthermore, NF-kappaB signaling was activated in HEK 293 cells expressing pCD40 and PECs by stimulation with hCD40L+ Jurkat T clones. Both anti-CD40L neutralizing antibodies and NF-kappaB signal inhibitors interfered with immune activation of PECs. Overall, this study shows that xenogeneic interaction between hCD40L and pCD40 can activate PECs through NF-kappaB signaling, and therefore may contribute to acute vascular rejection in xenotransplantation.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Porco Miniatura/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD40/química , Ligante de CD40/química , Linhagem Celular , Humanos , Dados de Sequência Molecular , Ligação Proteica , Suínos
13.
Cancer Res ; 79(24): 6126-6138, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31662324

RESUMO

Mcl-1 is a unique antiapoptotic Bcl2 family protein that functions as a gatekeeper in manipulating apoptosis and survival in cancer cells. Akt is an oncogenic kinase that regulates multiple cellular functions and its activity is significantly elevated in human cancers. Here we discovered a cross-talk between Mcl-1 and Akt in promoting lung cancer cell growth. Depletion of endogenous Mcl-1 from human lung cancer cells using CRISPR/Cas9 or Mcl-1 shRNA significantly decreased Akt activity, leading to suppression of lung cancer cell growth in vitro and in xenografts. Mechanistically, Mcl-1 directly interacted via its PEST domain with Akt at the pleckstrin homology (PH) domain. It is known that the interactions between the PH domain and kinase domain (KD) are important for maintaining Akt in an inactive state. The binding of Mcl-1/PH domain disrupted intramolecular PH/KD interactions to activate Akt. Intriguingly, Mcl-1 expression correlated with Akt activity in tumor tissues from patients with non-small cell lung cancer. Using the Mcl-1-binding PH domain of Akt as a docking site, we identified a novel small molecule, PH-687, that directly targets the PH domain and disrupts Mcl-1/Akt binding, leading to suppression of Akt activity and growth inhibition of lung cancer in vitro and in vivo. By targeting the Mcl-1/Akt interaction, this mechanism-driven agent provides a highly attractive strategy for the treatment of lung cancer. SIGNIFICANCE: These findings indicate that targeting Mcl-1/Akt interaction by employing small molecules such as PH-687 represents a potentially new and effective strategy for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Progressão da Doença , Seguimentos , Técnicas de Inativação de Genes , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Masculino , Camundongos , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Prognóstico , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Clin Invest ; 128(1): 500-516, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227281

RESUMO

DNA double-strand breaks (DSBs) are mainly repaired either by homologous recombination (HR) or by nonhomologous end-joining (NHEJ) pathways. Here, we showed that myeloid cell leukemia sequence 1 (Mcl-1) acts as a functional switch in selecting between HR and NHEJ pathways. Mcl-1 was cell cycle-regulated during HR, with its expression peaking in S/G2 phase. While endogenous Mcl-1 depletion reduced HR and enhanced NHEJ, Mcl-1 overexpression resulted in a net increase in HR over NHEJ. Mcl-1 directly interacted with the dimeric Ku protein complex via its Bcl-2 homology 1 and 3 (BH1 and BH3) domains, which are required for Mcl-1 to inhibit Ku-mediated NHEJ. Mcl-1 also promoted DNA resection mediated by the Mre11 complex and HR-dependent DSB repair. Using the Mcl-1 BH1 domain as a docking site, we identified a small molecule, MI-223, that directly bound to BH1 and blocked Mcl-1-stimulated HR DNA repair, leading to sensitization of cancer cells to hydroxyurea- or olaparib-induced DNA replication stress. Combined treatment with MI-223 and hydroxyurea or olaparib exhibited a strong synergy against lung cancer in vivo. This mechanism-driven combination of agents provides a highly attractive therapeutic strategy to improve lung cancer outcomes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Senescência Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Reparo de DNA por Recombinação , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Hidroxiureia/química , Hidroxiureia/farmacologia , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ftalazinas/química , Ftalazinas/farmacologia , Piperazinas/química , Piperazinas/farmacologia
15.
Mol Immunol ; 43(5): 480-6, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337491

RESUMO

CD86 is one of the key molecules involved in the co-stimulation of T cells. The complete cDNA encoding CD86 molecule of miniature swine was cloned and analyzed. A comparison of two CD86 amino acid sequences of miniature swine and domestic swine showed only three amino acid differences suggesting that it is unlikely to affect the major structural features of the miniature swine CD86 (msCD86). In the expression study, constitutive expression of CD86 mRNA was detected in various tissues, and the aberrant expression of the transcriptional variant (putative soluble form) was noted. The cDNA and amino acid sequences for this variant were determined and compared with those for the human soluble CD86, which was previously reported to co-stimulate the T cells. Interestingly, an alignment of the two sequences revealed that 51 amino acids corresponding to the sequence for the boundary of the extracellular and intracellular domains including the transmembrane domain are deleted at almost an identical location within the full form of CD86 from both species. This suggests the possibility of a co-stimulatory function of the putative soluble msCD86. In order to determine if the cloned msCD86 molecules has co-stimulatory activity, the proliferative responses of the human CD4(+) T cells to the msCD86-transfected COS cells were measured in the presence of Con A. The results revealed that CD86/COS, but not the mock/COS, efficiently co-stimulated the proliferation of the Con A-stimulated CD4(+) T cells and this co-stimulatory effect was blocked by CTLA4-Ig. The structural and functional information on the miniature swine CD86 from this study will enable a further genetic manipulation of CD86 as a therapeutic strategy for controlling the xenogeneic T cell immune responses mediated by the CD86-CD28 signal pathway.


Assuntos
Antígeno B7-2/genética , Porco Miniatura/genética , Sequência de Aminoácidos , Animais , Antígenos CD , Antígenos de Diferenciação/imunologia , Antígeno B7-2/imunologia , Linfócitos T CD4-Positivos/imunologia , Células COS , Antígeno CTLA-4 , Chlorocebus aethiops , Clonagem Molecular , Humanos , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Proteínas Recombinantes de Fusão/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Organismos Livres de Patógenos Específicos , Suínos , Porco Miniatura/imunologia , Transfecção
16.
Cancer Res ; 77(11): 3001-3012, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381544

RESUMO

A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistance in vitro and in vivo Taken together, our findings provide preclinical evidence for a pharmacologic combination of Bax activation and mTOR inhibition as a rational strategy to improve lung cancer treatment. Cancer Res; 77(11); 3001-12. ©2017 AACR.


Assuntos
Neoplasias Pulmonares/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Modelos Estruturais , Fosforilação , Transdução de Sinais
17.
J Environ Health ; 69(5): 17-24; quiz 39-40, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17190338

RESUMO

The study reported here looked at the survival of microorganisms (heterotrophic plate counts, total coliforms, E. coli, and bacterial spores) in a consumer-type microwave oven. Kitchen sponges, scrubbing pads, and syringes were experimentally contaminated with wastewater and subsequently exposed to microwave radiation. At 100 percent power level, it was found that the heterotrophic plate count (i.e., total bacterial count) of the wastewater was reduced by more that 99 percent within 1 to 2 minutes, and the total coliform and E. coli were totally inactivated after 30 seconds of microwave radiation. Bacterial phage MS2 was totally inactivated within 1 to 2 minutes. Spores of Bacillus cereus were more resistant than the other microorganisms tested, and were completely eradicated only after 4-minute irradiation. Similar inactivation rates were obtained in wastewater-contaminated scrubbing pads. Microorganisms attached to plastic syringes were more resistant to microwave irradiation than those associated with kitchen sponges or scrubbing pads. It took 10 minutes for total inactivation of the heterotrophic plate count and 4 minutes for total inactivation of total coliform and E. coli. A 4-log reduction of phage MS2 was obtained after 2 minutes; 97.4 percent reduction was observed after 12 minutes. The authors also observed a higher inactivation of B. cereus spores in syringes placed in a ceramic container than of spores in syringes placed in a glass container. This finding could have some implications for the design of containers to be used in exposure of medical devices to microwave radiation. The article discusses the implications of these findings for consumer safety in the home environment.


Assuntos
Bactérias/efeitos da radiação , Microbiologia de Alimentos , Produtos Domésticos/microbiologia , Micro-Ondas , Bactérias/crescimento & desenvolvimento , Produtos Domésticos/classificação , Temperatura
18.
Bio Protoc ; 6(22)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-28184379

RESUMO

Patient-derived xenograft (PDX) models for cancer research have recently attracted considerable attention in both the academy and industry (Hidalgo et al., 2014; Wilding and Bodmer, 2014). PDX models have been developed from different tumor types including lung cancer to improve the drug development process. These models are used for pre-clinical drug evaluation and can be used for the predictive results of clinical outcomes because they conserve original tumor characteristics such as heterogeneity, complexity and molecular diversity (Kopetz et al., 2012). Additionally, PDX model provides the potential tool for the personalized drug therapy. In this protocol, we present methods for the establishment of PDX in mice using primary tumor tissues from patients with small cell lung cancer (SCLC).

19.
Genes (Basel) ; 7(8)2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27548226

RESUMO

The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit "replication stress" -a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

20.
Oncotarget ; 7(19): 27753-63, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27049723

RESUMO

Multiple myeloma (MM) is a heterogeneous plasma cell malignancy and remains incurable. B-cell lymphoma-2 (BCL2) protein correlates with the survival and the drug resistance of myeloma cells. BH3 mimetics have been developed to disrupt the binding between BCL2 and its pro-apoptotic BCL2 family partners for the treatment of MM, but with limited therapeutic efficacy. We recently identified a small molecule BDA-366 as a BCL2 BH4 domain antagonist, converting it from an anti-apoptotic into a pro-apoptotic molecule. In this study, we demonstrated that BDA-366 induces robust apoptosis in MM cell lines and primary MM cells by inducing BCL2 conformational change. Delivery of BDA-366 substantially suppressed the growth of human MM xenografts in NOD-scid/IL2Rγnull mice, without significant cytotoxic effects on normal hematopoietic cells or body weight. Thus, BDA-366 functions as a novel BH4-based BCL2 inhibitor and offers an entirely new tool for MM therapy.


Assuntos
Antraquinonas/uso terapêutico , Apoptose/efeitos dos fármacos , Etanolaminas/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Antraquinonas/efeitos adversos , Linhagem Celular Tumoral , Etanolaminas/efeitos adversos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA