Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 19(6): 3871-3877, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31091875

RESUMO

Stretchable materials are indispensable for applications such as deformable devices, wearable electronics, and future robotics. However, designs for new elastomers with high stretchability have undergone only limited research. Here we have fabricated highly stretchable Ag+/polyacrylonitrile elastomer with nanoreservoirs of lubricant using cyano-silver complexes. The prepared products feature nanoconfinement structures of lubricant surrounded by polymer chains with coordination bond through chelates of cyano-silver, resulting in an enhanced stretchability of more than 600% from 2%. The elastomeric properties were investigated, and a mechanical response model was proposed, which explained the structural evolution including the polymer chain fluidity under external deformation. Also, the easy breakage and dynamic reformation of cyano-silver coordination complexes promises a strain recovery under various stretching conditions. This elastomer itself can directly work as sensors and open paths to alternative substrates for soft electronics development.

2.
Appl Opt ; 58(35): 9498-9504, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31873547

RESUMO

This paper presents simulation results for double nanohole and inverted bowtie nanoapertures optimized to resonate in the short-wave infrared regime (1050 nm and 1550 nm). These geometries have shown great promise for trapping nanoparticles with applications in optical engineering, physics, and biology. Using a finite element analysis tool, we found that the outline length for inverted bowtie nanoapertures in a 100 nm thick gold film with a 20 nm gap dimension having an optimized transmission resonance for 1050 nm and 1550 nm optical wavelengths is 106.5 nm and 188.5 nm, respectively. With the same gap size, the radii of the circles for the double nanohole nanoapertures are 72 nm and 128 nm. The near-field enhancements of the two structures are almost the same, while the double nanohole geometries have a 20% larger full width at half-maximum than the inverted bowtie. Next, by studying the effect of changing the inner radii of the inverted bowtie corners, we found that the difference between 2 nm and 6 nm corner radii can blue-shift the optical resonance by up to 45 nm. As a result of not having any inner corners, the double nanohole structure requires less precise fabrication and therefore could potentially have a higher successful yield of nanoapertures during the manufacturing process. Lastly, we will show experimental results that confirm the optical resonance of the nanoapertures at 1550 nm. These results will enable better performance and signal-to-noise ratio in nanoaperture trapping for the short-wave infrared wavelength regime.

3.
Europace ; 16(12): 1738-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25336668

RESUMO

AIMS: Although circumferential pulmonary vein isolation (CPVI) has been considered as the cornerstone for paroxysmal atrial fibrillation (PAF) ablation, there has been a substantial recurrence rate. We conducted a prospectively randomized study to evaluate whether additional linear ablation from the superior vena cava (SVC) to the right atrial (RA) septum (SVC-L) improves the clinical outcome. METHODS AND RESULTS: This study enroled 200 patients with PAF (male 74.5%, 56.8 ± 11.7 years old) randomly assigned to either the CPVI (n = 100) or CPVI + SVC-L (n = 100) groups. An RA isthmus ablation was performed in all patients. The CPVI + SVC-L group required a longer ablation procedure time (82.7 ± 17.9 min) than the CPVI group (63.6 ± 16.8 min, P < 0.001). The complication rates were 5% in CPVI + SVC-L group and 2% in CPVI group, respectively (P = 0.445). Two CPVI + SVC-L group patients had post-procedural sinus node dysfunction, which recovered within 24 h. During 12.2 ± 5.3 months of follow-up, the recurrence rate was significantly lower in the CPVI + SVC-L group (6%) than the CPVI group (27%, P < 0.001). The post-procedural 3-month follow-up heart rate variability in the CPVI + SVC-L group showed a significantly greater reduction in the rMSSD (25.2 ± 13.7 vs. 13.7 ± 8.5 ms, P < 0.001), HF (10.2 ± 7.1 vs. 5.5 ± 5.8 ms(2), P < 0.001), and LF/HF (1.6 ± 0.5 vs. 0.9 ± 0.3, P < 0.001) than in the CPVI group. CONCLUSION: In spite of a longer procedure time and risk of transient sinus node dysfunction, an SVC-L in addition to CPVI improved the clinical outcome of catheter ablation, and was associated with post-procedural autonomic neural remodelling in patients with PAF.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Septo Interatrial/cirurgia , Ablação por Cateter/métodos , Sistema de Condução Cardíaco/cirurgia , Veias Pulmonares/cirurgia , Veia Cava Superior/cirurgia , Mapeamento Potencial de Superfície Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Cirurgia Assistida por Computador/métodos , Resultado do Tratamento
4.
Angew Chem Int Ed Engl ; 53(11): 2899-903, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24519917

RESUMO

Structurally colored materials could potentially replace dyes and pigments in many applications, but it is challenging to fabricate structural colors that mimic the appearance of absorbing pigments. We demonstrate the microfluidic fabrication of "photonic pigments" consisting of microcapsules containing dense amorphous packings of core-shell colloidal particles. These microcapsules show non-iridescent structural colors that are independent of viewing angle, a critical requirement for applications such as displays or coatings. We show that the design of the microcapsules facilitates the suppression of incoherent and multiple scattering, enabling the fabrication of photonic pigments with colors spanning the visible spectrum. Our findings should provide new insights into the design and synthesis of materials with structural colors.

5.
Langmuir ; 29(1): 75-81, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23215160

RESUMO

The assembly of ordered dicolloid monolayers is directed by an electric field. The dicolloid particles are polystyrene latex with a maximum equatorial diameter 3.45 µm and length 4.63 µm. The monolayer structure is characterized using small-angle light scattering and bright-field microscopy. With increasing field strength from 26.7 to 200 V(RMS)/cm, a transition from a disordered monolayer, to first orientationally ordered, and then translationally ordered two-dimensional (2D) arrays occurs. A c2mm plane group symmetry dominates the ordered structure but is present alongside structures with p2 symmetry, leading to a spread in the angular distribution of the light scattering peaks. The order-disorder transition dependence on field strength and frequency is similar to that observed for colloidal spheres; at higher frequencies, stronger fields are required to assemble particles. Optimal ordered structures reflect a balance between inducing sufficiently strong interparticle interactions while limiting the rate of formation to ensure the growth of large crystalline domains.

6.
ACS Appl Nano Mater ; 6(13): 11260-11268, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37469508

RESUMO

An approach is established for fabricating high-strength and high-stiffness composite laminates with continuous carbon nanotube (CNT) yarns for scaled-up mechanical tests and potential aerospace structure applications. Continuous CNT yarns with up to 80% degree of nanotube alignment and a unique self-assembled graphitic CNT packing result in their specific tensile strengths of 1.77 ± 0.07 N/tex and an apparent specific modulus of 92.6 ± 3.2 N/tex. Unidirectional CNT yarn reinforced composite laminates with a CNT concentration of greater than 80 wt % and minimal microscale voids are fabricated using filament winding and aerospace-grade resin matrices. A specific tensile strength of up to 1.71 GPa/(g cm-3) and specific modulus of 256 GPa/(g cm-3) are realized; the specific modulus exceeds current state-of-the-art unidirectional carbon fiber composite laminates. The specific modulus of the laminates is 2.76 times greater than the specific modulus of the constituent CNT yarns, a phenomenon not observed in carbon fiber reinforced composites. The results demonstrate an effective approach for fabricating high-strength CNT yarns into composites for applications that require specific tensile modulus properties that are significantly beyond state-of-the-art carbon fiber composites and potentially open an unexplored performance region in the Ashby chart for composite material applications.

7.
Nat Methods ; 6(12): 905-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19915561

RESUMO

Molecular gradients are important for various biological processes including the polarization of tissues and cells during embryogenesis and chemotaxis. Investigations of these phenomena require control over the chemical microenvironment of cells. We present a technique to set up molecular concentration patterns that are chemically, spatially and temporally flexible. Our strategy uses optically manipulated microsources, which steadily release molecules. Our technique enables the control of molecular concentrations over length scales down to about 1 microm and timescales from fractions of a second to an hour. We demonstrate this technique by manipulating the motility of single human neutrophils. We induced directed cell polarization and migration with microsources loaded with the chemoattractant formyl-methionine-leucine-phenylalanine. Furthermore, we triggered highly localized retraction of lamellipodia and redirection of polarization and migration with microsources releasing cytochalasin D, an inhibitor of actin polymerization.


Assuntos
Neutrófilos/citologia , Óptica e Fotônica , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos
8.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457959

RESUMO

As the aerospace industry is increasingly demanding stronger, lightweight materials, ultra-strong carbon nanotube (CNT) composites with highly aligned CNT network structures could be the answer. In this work, a novel methodology applying topological data analysis (TDA) to scanning electron microscope (SEM) images was developed to detect CNT orientation. The CNT bundle extensions in certain directions were summarized algebraically and expressed as visible barcodes. The barcodes were then calculated and converted into the total spread function, V(X, θ), from which the alignment fraction and the preferred direction could be determined. For validation purposes, the random CNT sheets were mechanically stretched at various strain ratios ranging from 0 to 40%, and quantitative TDA was conducted based on the SEM images taken at random positions. The results showed high consistency (R2 = 0.972) compared to Herman's orientation factors derived from polarized Raman spectroscopy and wide-angle X-ray scattering analysis. Additionally, the TDA method presented great robustness with varying SEM acceleration voltages and magnifications, which might alter the scope of alignment detection. With potential applications in nanofiber systems, this study offers a rapid and simple way to quantify CNT alignment, which plays a crucial role in transferring the CNT properties into engineering products.

9.
Nanotechnology ; 22(36): 365706, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21841216

RESUMO

Buckypapers (BPs) are free standing thin sheets made of carbon nanotubes, such as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) or their mixtures. In this research, through in situ electrical resistance measurements, we studied the electrical conductance changes of carbon nanotube networks (NTNs) in various BP samples from complete immersion to evaporation using different chemical solvents. BP samples demonstrated a 20-30% decrease in conductance upon the immersion and almost full recovery after the drying process. We found that by pre-stressing, BP samples demonstrated highly reproducible patterns of conductance changes corresponding to solvent quantity. This feature can be potentially used for sensor applications to simultaneously detect both the occurrence and the amount of organic solvent leakage.

10.
Sci Technol Adv Mater ; 12(5): 055002, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877440

RESUMO

This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of ß-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and ß-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of ß-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of functionalized spider silk are presented for thermoelectric (Seebeck) effects and incandescence in iodine-doped pyrolized silk fibers, and metallic conductivity and flexibility of micron-sized gold-sputtered silk fibers. In the latter case, we demonstrate the application of gold-sputtered neat spider silk to make four-terminal, flexible, ohmic contacts to organic superconductor samples.

11.
Nanomaterials (Basel) ; 11(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34578761

RESUMO

Huntsman-Merrimack MIRALON® carbon nanotubes (CNTs) are a novel, highly entangled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM® 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties. Epoxy composites were tested for flexural and viscoelastic properties and the as-received and acid treated CNTs were characterized using Field-Emission Scanning and Transmission Electron Microscopy, X-Ray Photoelectron Spectroscopy, and Thermogravimetric Analysis. Composites containing 0.4 wt% as-received CNTs showed an increase in flexural strength, from 136.9 MPa for neat epoxy to 147.5 MPa. In addition, the flexural modulus increased from 3.88 GPa for the neat epoxy to 4.24 GPa and 4.49 GPa for the 2.0 wt% and 3.0 wt% as-received CNT/epoxy composites, respectively. FE-SEM micrographs indicated good dispersion of the CNTs in the as-received CNT/epoxy composites and the 10 M nitric acid 6 h treatment at 120 °C CNT/epoxy composites. CNTs treated with 10 M nitric acid for 6 h at 120 °C added oxygen containing functional groups (C-O, C=O, and O=C-O) and removed iron catalyst present on the as-received CNTs, but the flexural properties were not improved compared to the as-received CNT/epoxy composites.

12.
J Am Chem Soc ; 132(17): 5960-1, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20373805

RESUMO

We describe a method for producing highly monodisperse dumbbell-shaped polymer nanoparticles with dimensions on the order of a few hundred nanometers in extremely high yields. Our technique is based on seeded polymerization, where suspended core-shell particles (linear polystyrene core with polystyrene-co-trimethoxysilylpropylacrylate shell) are used as seeds. When an aqueous suspension of seed particles is mixed with monomer solution, the core-shell particles display dramatic changes in their morphology. Subsequent heating drives the polymerization of monomer, resulting in the formation of dumbbell-shaped particles. The relative sizes of the two lobes can be controlled by varying the relative volume of the monomer with respect to the seed particle. These particles are well-suited for future studies of the assembly of photonic crystals of anisotropic particles.

13.
Materials (Basel) ; 13(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977502

RESUMO

Microstructures of typical carbon fibers (CFs) from polyacrylonitrile (PAN) and pitch-based precursors were studied using a novel digital twin approach with individual carbon fibers for a local crystal scale model. The transmission electron microscopy (TEM) samples were prepared using a focused-ion beam (FIB) for both longitudinal and transverse directions of carbon fibers. Measurements of the crystal size and orientation were estimated from X-ray scattering. TEM imaging of graphitic packing facilitated further comprehension of associations between processing and final material properties, which could enable customization of microstructures for property targets. Then the detailed microstructural information and their X-ray scattering properties were incorporated into the simulation model of an individual carbon fiber. Assuming that graphene properties are the same among different forms of carbon fiber, a reasonable physics-based explanation for such a drastic decrease in strength is the dislocations between the graphitic units. The model reveals critical defects and uncertainty of carbon fiber microstructures, including skin/core alignment differences and propagating fracture before ultimate failure. The models are the first to quantify microstructures at the crystal scale with micromechanics and to estimate tensile and compressive mechanical properties of carbon fiber materials, as well as potentially develop new fundamental understandings for tailoring carbon fiber and composites properties.

14.
Phys Rev E ; 101(1-1): 012614, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069652

RESUMO

Disordered packings of colloidal spheres show angle-independent structural color when the particles are on the scale of the wavelength of visible light. Previous work has shown that the positions of the peaks in the reflectance spectra can be predicted accurately from a single-scattering model that accounts for the effective refractive index of the material. This agreement shows that the main color peak arises from short-range correlations between particles. However, the single-scattering model does not quantitatively reproduce the observed color: the main peak in the reflectance spectrum is much broader and the reflectance at low wavelengths is much larger than predicted by the model. We use a combination of experiment and theory to understand these features. We find that one significant contribution to the breadth of the main peak is light that is scattered, totally internally reflected from the boundary of the sample, and then scattered again. The high reflectance at low wavelengths also results from multiple scattering but can be traced to the increase in the scattering cross section of individual particles with decreasing wavelength. Both of these effects tend to reduce the saturation of the structural color, which limits the use of these materials in applications. We show that while the single-scattering model cannot reproduce the observed saturations, it can be used as a design tool to reduce the amount of multiple scattering and increase the color saturation of materials, even in the absence of absorbing components.

15.
Nanomaterials (Basel) ; 10(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093150

RESUMO

Double-walled carbon nanotubes (DWCNTs) were synthesized and continuously collected using a water-assisted floating catalyst chemical vapor deposition (FCCVD) method. Differing from the conventional water-assisted synthesis in which water vapor is one part of the carrier gas mixture, we included de-ionized water in the catalyst system, which achieved a more uniform and controlled distribution for efficient DWCNT production. Using a water-assisted FCCVD process with optimized conditions, a transition from multi- to double-walled CNTs was observed with a decrease in diameters from 19-23 nm to 10-15 nm in tandem with an elevated Raman IG/ID ratio up to 10.23, and corroborated from the decomposition peak shifts in thermogravimetric data. To characterize the mechanical and electrical improvements, the FCCVD-CNT/bismaleimide (BMI) composites with different water concentrations were manufactured, revealing high electrical conductivity of 1720 S/cm along the bundle alignment (collection) direction, and the nano-indentation tests showed an axial reduced modulus at 65 GPa. A consistent value of the anisotropic ratio at ~3 was observed comparing the longitudinal and transverse properties. The continuous capability of the presented method while maintaining high quality is expected to result in an improved DWCNT mass production process and potentially enhance the structural and electrical applications of CNT nanocomposites.

16.
Int J Biol Macromol ; 146: 916-921, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726119

RESUMO

The study of lignocellulosic materials calls for understanding the structure, and function of different cellulosic materials from diverse sources to scale-up cellulosic ethanol production. For the first time, a systematic assessment of the molecular and supramolecular structure highlighting the similarities and dissimilarities of three major categories of lignocellulosic materials: wood-based (cedar and oak), energy crop (bamboo), and agricultural or forestry waste (palm) are reported. The cellulose, hemicellulose, and lignin constituents were compared for their suitability in cellulosic ethanol production. FTIR showed structural variations within the functional groups with notable OH group in the palm and CC group in cedar. From the X-ray scattering, bamboo exhibited the highest crystallinity (49.5%), and palm showed the lowest crystallinity (22.6%) and crystallite size (2.6 nm). TGA revealed high cellulose amount and stable structure for cedar and oak, and the most unstable structure in the palm, which indicates a better cellulose/hemicellulose accessibility and biodegradability for enzymatic or chemical action in the palm. This comparative assessment can greatly facilitate material selection and component mixture, for developing an efficient and cost-effective biochemical process in ethanol manufacturing.


Assuntos
Celulose/química , Lignina/química , Análise Espectral , Temperatura , Cristalização , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
17.
Int J Biol Macromol ; 147: 762-767, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31982518

RESUMO

The inter-particle interference of lignocellulosic materials describes the order of the macromolecules at a larger size scale, which can give information about the pore structure, and interface of cellulose and lignin. The pore structure and interface influence the rate of enzymatic hydrolysis and thermal decomposition in cellulosic ethanol manufacturing. In this study, the inter-particle interference of cellulose and lignin of three major categories of lignocellulosic materials: wood-based (cedar and oak), energy crop (bamboo), and agricultural or forestry waste (palm) were evaluated. Scanning electron microscopy (SEM) reveals morphological irregularities in the case of bamboo and palm, which may form nucleation sites for faster accessibility to enzyme molecules. Small-angle X-ray scattering (SAXS) shows increased power-law exponent for palm, suggesting a less clustered structure, which was consistent with the rough surface morphology as detected by the SEM. Differential Scanning Calorimetry (DSC) showed a higher temperature maximum for cedar and oak, which is indicative of higher intermolecular forces within their organic compounds, and could result in slower disintegration of the macromolecules during biochemical processing. This study will help to estimate the activity of the macromolecules and absorption capacity of lignocellulosic materials during biochemical processing.


Assuntos
Celulose/química , Lignina/química , Hidrólise , Espalhamento a Baixo Ângulo , Madeira/química , Difração de Raios X
18.
Nanotechnology ; 20(33): 335601, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19636092

RESUMO

Single-walled carbon nanotube (SWNT)/polymer composites are widely studied because of their potential for high mechanical performance and multifunctional applications. In order to realize highly ordered multilayer nanostructures, we combined the layer-by-layer (LBL) assembly method with magnetic force-induced alignment to fabricate SWNT/poly(ethylamine) (PEI) multilayer composites. The SWNTs were functionalized with the anionic surfactant sodium dodecylbenzenesulfonate (NaDDBS) to realize negative charge at pH>7, while the PEI is positively charged at pH<7. The LBL method is based on the electrostatic absorption between the charged SWNTs and PEI resin to form multilayer composites on a solid substrate polydimethylsiloxane. Since the fabricated thickness of each SWNT-NaDDBS/PEI bilayer is uniform ( approximately 150 nm), the multilayer film thickness can be strictly controlled via the number of deposition cycles. A high magnetic field (8.5 Tesla) was used to align the SWNTs during the LBL process. The resultant LBL composite samples demonstrated high SWNT loading of approximately 50 wt% and uniform distribution of SWNTs in the multilayer structures, which was verified using a quartz crystal microbalance. Good alignment was also realized and observed through using high magnetic fields to align the nanotubes during the LBL deposition process. The results indicate that the LBL/magnetic alignment approach has potential for fabricating nanotube composites with highly ordered nanostructures for multifunctional materials and device applications.

19.
Nanotechnology ; 20(41): 415702, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19755727

RESUMO

Preformed carbon nanotube thin films (10-20 microm), or buckypapers (BPs), consist of dense and entangled nanotube networks, which demonstrate high electrical conductivity and provide potential lightweight electromagnetic interference (EMI) solutions for composite structures. Nanocomposite laminates consisting of various proportions of single-walled and multi-walled carbon nanotubes, having different conductivity, and with different stacking structures, were studied. Single-layer BP composites showed shielding effectiveness (SE) of 20-60 dB, depending on the BP conductivity within a 2-18 GHz frequency range. The effects on EMI SE performance of composite laminate structures made with BPs of different conductivity values and epoxy or polyethylene insulating layer stacking sequences were studied. The results were also compared against the predictions from a modified EMI SE model. The predicted trends of SE value and frequency dependence were consistent with the experimental results, revealing that adjusting the number of BP layers and appropriate arrangement of the BP conducting layers and insulators can increase the EMI SE from 45 dB to close to 100 dB owing to the utilization of the double-shielding effect.


Assuntos
Eletroquímica/métodos , Campos Eletromagnéticos , Nanocompostos/química , Nanotecnologia/métodos , Nanotubos de Carbono/química
20.
Adv Mater ; 31(18): e1900693, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30873667

RESUMO

Colloidal particles with a repulsive interparticle potential spontaneously form crystalline lattices, which are used as a motif for photonic materials. It is difficult to predict the crystal arrangement in spherical volume as lattices are incompatible with a spherical surface. Here, the optimum arrangement of charged colloids is experimentally investigated by encapsulating them in double-emulsion drops. Under conditions of strong interparticle repulsion, the colloidal crystal rapidly grows from the surface toward the center of the microcapsule, forming an onion-like arrangement. By contrast, for weak repulsion, crystallites slowly grow and fuse through rearrangement to form a single-crystal phase. Single-crystal structure is energetically favorable even for strong repulsion. Nevertheless, a high energy barrier to colloidal rearrangement kinetically arrests the onion-like structure formed by heterogeneous nucleation. Unlike the isotropic onion-shaped product, the anisotropic single-crystal-containing microcapsules selectively display-at certain orientations but not others-one of the distinct colors from the various crystal planes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA