Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nano Lett ; 24(37): 11504-11511, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39177953

RESUMO

Ice, one of the most enigmatic materials on Earth, exhibits diverse polymorphism, with research mainly focusing on the most commonly observed phases: hexagonal ice (Ih), cubic ice (Ic), and stacking-disordered ice (Isd). While their formation or structural changes are crucial for advancements in cloud science, climate modeling, and cryogenic technology, the molecular mechanisms driving these phenomena remain unexplored. Herein, utilizing cryogenic transmission electron microscopy, we investigate the formation of ice at two different temperatures, demonstrating a size-dependent phase shift from Ic to Isd. Furthermore, a relatively metastable cubic phase in Isd transitions to a hexagonal phase under electron beam radiation. This transition, facilitated by crystal defects, contrasts with perfect crystalline Ic, which maintains its original phase, emphasizing the importance of defects in polymorphic phase transitions. Our findings provide novel insights on phase control during the ice growth processes and polymorphic phase transitions from the cubic-to-hexagonal phases.

2.
Appl Opt ; 61(34): 10116-10120, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606772

RESUMO

A linear-type wavelength-tunable all-polarization-maintaining fiber mode-locked laser is proposed for the first time, to our knowledge, and is implemented with an Er-doped fiber and polarization-maintaining fiber components. The tuning range of the center wavelength is from 1533.7 nm to 1565.6 nm. The linear-type configuration makes the proposed laser simpler and more compact, allowing it to achieve the highest repetition rate of 126.5 MHz among C-band wavelength-tunable mode-locked lasers due to its short cavity length. Also, its polarization-maintaining fiber components provide reliable operating robustness. The significant wavelength tunability and high repetition rate of the proposed laser can be expected to make it an attractive resource for various applications, including optical communications, broadband spectroscopic LIDAR, and high-precision ranging.

3.
Planta ; 254(5): 98, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34657208

RESUMO

MAIN CONCLUSION: Mota Maradi is a sorghum line that exhibits holistic salinity tolerance mechanisms, making it a viable potential donor in breeding efforts for improved sorghum lines. High soil salinity is one of the global challenges for crop growth and productivity. Understanding the salinity tolerance mechanisms in crops is necessary for genetic breeding of salinity-tolerant crops. In this study, physiological and molecular mechanisms in sorghum were identified through a comparative analysis between a Nigerien salinity-tolerant sorghum landrace, Mota Maradi, and the reference sorghum line, BTx623. Significant differences on physiological performances were observed, particularly on growth and biomass gain, photosynthetic rate, and the accumulation of Na+, K+, proline, and sucrose. Transcriptome profiling of the leaves, leaf sheaths, stems, and roots revealed contrasting differentially expressed genes (DEGs) in Mota Maradi and BTx623 which supports the physiological observations from both lines. Among the DEGs, ion transporters such as HKT, NHX, AKT, HAK5, and KUP3 were likely responsible for the differences in Na+ and K+ accumulation. Meanwhile, DEGs involved in photosynthesis, cellular growth, signaling, and ROS scavenging were also identified between these two genotypes. Functional and pathway analysis of the DEGs has revealed that these processes work in concert and are crucial in elevated salinity tolerance in Mota Maradi. Our findings indicate how different complex processes work synergistically for salinity stress tolerance in sorghum. This study also highlights the unique adaptation of landraces toward their respective ecosystems, and their strong potential as genetic resources for future plant breeding endeavors.


Assuntos
Tolerância ao Sal , Sorghum , Ecossistema , Perfilação da Expressão Gênica , Melhoramento Vegetal , Salinidade , Tolerância ao Sal/genética , Sorghum/genética , Estresse Fisiológico , Transcriptoma
4.
Opt Express ; 29(8): 12229-12239, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984987

RESUMO

The importance of dimensional metrology has gradually emerged from fundamental research to high-technology industries. In the era of the fourth industrial revolution, absolute distance measurements are required to cope with various applications, such as unmanned vehicles, intelligent robots, and positioning sensors for smart factories. In such cases, the size, weight, power, and cost (SWaP-C) should essentially be restricted. In this paper, sub-100 nm precision distance measurements based on an amplitude-modulated continuous-wave laser (AMCW) with an all-fiber photonic microwave mixing technique is proposed and realized potentially to satisfy SWaP-C requirements. Target distances of 0.879 m and 8.198 m were measured by detecting the phase delay of 15 GHz modulation frequencies. According to our measurement results, the repeatability could reach 43 nm at an average time of 1 s, a result not previously achieved by conventional AMCW laser distance measurement methods. Moreover, the performance by the proposed method in terms of Allan deviation is competitive with most frequency-comb-based absolute distance measurement methods, even with a simple configuration. Because the proposed method has a simple configuration such that it can be easily utilized and demonstrated on a chip-scale platform using CMOS-compatible silicon photonics, it is expected to herald new possibilities, leading to the practical realization of a fully integrated chip-scale LIDAR system.

5.
Opt Express ; 29(20): 31615-31631, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615252

RESUMO

In this study, an optical method that allows simultaneous thickness measurements of two different layers distributed over a broad thickness range from several tens of nanometers to a few millimeters based on the integration of a spectroscopic reflectometer and a spectral-domain interferometer is proposed. Regarding the optical configuration of the integrated system, various factors, such as the operating spectral band, the measurement beam paths, and the illumination beam type, were considered to match the measurement positions and effectively separate two measurement signals acquired using both measurement techniques. Furthermore, for the thickness measurement algorithm, a model-based analysis method for high-precision substrate thickness measurements in thin-film specimens was designed to minimize the measurement error caused by thin films, and it was confirmed that the error is decreased significantly to less than 8 nm as compared to that when using a Fourier-transform analysis. The ability to undertake simultaneous thickness measurements of both layers using the proposed system was successfully verified on a specimen consisting of silicon dioxide thin film with nominal thicknesses of 100 nm and 150 nm and a 450 µm-thick silicon substrate, resulting in the exact separation between the two layers. From measurement uncertainty evaluation of a thin-film, a substrate in a thin-film specimen, and a single substrate, the uncertainties were estimated to be 0.12 nm for the thin-film, 0.094 µm for the substrate in a thin-film specimen, and 0.076 µm for the substrate. The measurement performance of thicknesses distributed on multi-scale was verified through comparative measurements using standard measurement equipment for several reference samples.

6.
Nano Lett ; 20(3): 2080-2086, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32097564

RESUMO

Understanding of lithium polysulfide (Li-PS) formation and the shuttle phenomenon is essential for practical application of the lithium/sulfur (Li/S) cell, which has superior theoretical specific energy (2600 Wh/kg). However, it suffers from the lack of direct observation on behaviors of soluble Li-PS in liquid electrolytes. Using in situ graphene liquid cell electron microscopy, we have visualized formation and diffusion of Li-PS simultaneous with morphological and phase evolutions of sulfur nanoparticles during lithiation. We found that the morphological changes and Li-PS diffusion are retarded by ionic liquid (IL) addition into electrolyte. Chronoamperometric shuttle current measurement confirms that IL addition lowers the experimental diffusion coefficient of Li-PS by 2 orders of magnitude relative to that in IL-free electrolyte and thus suppresses the Li-PS shuttle current, which accounts for better cyclability and Coulombic efficiency of the Li/S cell. This study provides significant insights into electrolyte design to inhibit the polysulfide shuttle phenomenon.

7.
Appl Opt ; 59(20): 5881-5887, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32672730

RESUMO

When manufacturing glass substrates for display devices, especially for large-sized ones, the time-varying spatial temperature gradient or distribution on the samples is remarkably observed. It causes serious degradation of thickness measurement accuracy due to the combination of thermally expanded thickness and temperature-dependent refractive index. To prevent or minimize the degradation in thickness measurement accuracy, the temperature distribution over an entire glass substrate has to be known in real time in synchronization with the thickness measurement to specify the refractive index of the sample based on an exact mathematical model of the temperature-dependent refractive index. In this paper, a measurement method for determining the thickness profile of a large glass substrate regardless of precise measurement of temperature distribution and the mathematical model of the refractive index was demonstrated. The widely used glass substrates with nominal thicknesses of 0.6 mm and 1.3 mm were measured at room and high temperatures. Through comparison of thickness profiles of hot glass substrates having large temperature gradients and those estimated through thermal expansion of thickness profiles measured at room temperature, it was confirmed that the proposed method can provide highly reliable thickness measurement results under such challenging conditions, unlike simple calculation from the optical thickness using the well-known refractive index.

8.
Opt Express ; 27(17): 24682-24692, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510353

RESUMO

An optical method to resolve the non-measurable thickness problem caused by the overlap of optical path differences within a specific thickness range when measuring the physical thickness of a sample using a spectral-domain interferometer is proposed and realized. Optical path differences can be discerned by inserting a correction glass piece into the measurement path, thus increasing the measurement optical path length. To verify the proposed method, 0.2-mm-thick N-BK7 glass was used as a sample, with physical thickness and group refractive index measurements conducted according to three different correction glass elements with corresponding nominal thicknesses of 3.0 mm, 3.5 mm, and 4.0 mm. Through uncertainty evaluations according to the correction glass used, the physical thicknesses of the sample were found to be in good agreement within measurement uncertainties of less than 100 nm, results comparable to those of previous works which did not use any correction glass.

9.
Opt Express ; 25(11): 12689-12697, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786623

RESUMO

An interferometric method using an optical comb is proposed and realized to measure the total physical thickness of a multi-layered wafer even if the refractive index of each layer is not given. For a feasibility test, two-layered and three-layered silicon-on-glass wafers were chosen as samples and were measured. An uncertainty evaluation was conducted to estimate the performance capabilities of the proposed method. To verify the measured values, the wafers were also measured by a contact-type standard instrument. For the three-layered wafer, the total physical thickness distribution was determined in a selected area.

10.
Opt Express ; 23(26): 32941-9, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26831961

RESUMO

We propose and realize a modified spectral-domain interferometer to measure the physical thickness profile and group refractive index distribution of a large glass substrate simultaneously. The optical layout was modified based on a Mach-Zehnder type interferometer, which was specially adopted to be insensitive to mechanical vibration. According to the measurement results of repeated experiments at a length of 820 mm along the horizontal axis, the standard deviations of the physical thickness and group refractive index were calculated to be 0.173 µm and 3.4 × 10(-4), respectively. To verify the insensitivity to vibration, the physical thickness values were monitored at a stationary point while the glass panel was swung at an amplitude exceeding 20 mm. The uncertainty components were evaluated, and the combined measurement uncertainty became 161 nm (k = 1) for a glass panel with a nominal thickness of 0.7 mm.

11.
Opt Express ; 22(19): 23427-32, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321811

RESUMO

We developed an optical interferometric probe for measuring the geometrical thickness and refractive index of silicon wafers based on a Fizeau-type spectral-domain interferometer, as realized by adopting the optical fiber components of a circulator and a sheet-type beam splitter. The proposed method enables us to achieve a much simpler optical composition and higher immunity to air fluctuations owing to the use of fiber components and a common-path configuration as compared to a bulk-type optical configuration. A femtosecond pulse laser having a spectral bandwidth of 80 nm at a center wavelength of 1.55 µm and an optical spectrum analyzer having a wavelength uncertainty of 0.02 nm were used to acquire multiple interference signals in the frequency domain without a mechanical phase-shifting process. Among the many peaks in the Fourier-transformed signals of the measured interferograms, only three interference signals representing three different optical path differences were selected to extract both the geometrical thickness and group refractive index of a silicon wafer simultaneously. A single point on a double-sided polished silicon wafer was measured 90 times repetitively every two seconds. The geometrical thickness and group refractive index were found to be 476.89 µm and 3.6084, respectively. The measured thickness is in good agreement with that of a contact type method within the expanded uncertainty of contact-type instruments. Through an uncertainty evaluation of the proposed method, the expanded uncertainty of the geometrical thickness was estimated to be 0.12 µm (k = 2).


Assuntos
Algoritmos , Interferometria/instrumentação , Lasers , Fibras Ópticas , Refratometria/instrumentação , Silício/química , Desenho de Equipamento , Dispositivos Ópticos , Análise Espectral
12.
Curr Dev Nutr ; 8(4): 102147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38645881

RESUMO

Background: Infant formula in the United States contains abundant iron, raising health concerns about excess iron intake in early infancy. Objectives: Using a piglet model, we explored the impact of high iron fortification and prebiotic or synbiotic supplementation on iron homeostasis and trace mineral bioavailability. Methods: Twenty-four piglets were stratified and randomly assigned to treatments on postnatal day 2. Piglets were individually housed and received an iron-adequate milk diet (AI), a high-iron milk diet (HI), HI supplemented with 5% inulin (HI with a prebiotic [HIP]), or HIP with an oral gavage of Ligilactobacillus agilis YZ050, an inulin-fermenting strain, every third day (HI with synbiotic [HIS]). Milk was provided in 14 meals daily, mimicking formula feeding in infants. Fecal consistency score and body weight were recorded daily or every other day. Blood and feces were sampled weekly, and tissues collected on postnatal day 29. Data were analyzed using mixed model analysis of variance with repeated measures whenever necessary. Results: Diet did not affect growth. HI increased hemoglobin, hematocrit, and serum iron compared to AI. Despite marginal adequacy, AI upregulated iron transporter genes and maintained satisfactory iron status in most pigs. HI upregulated hepcidin gene expression in liver, caused pronounced tissue iron deposition, and markedly increased colonic and fecal iron. Inulin supplementation, regardless of L. agilis YZ050, not only attenuated hepatic iron overload but also decreased colonic and fecal iron without altering pH or the expression of iron regulatory genes. HI lowered zinc (Zn) and copper (Cu) in the duodenum and liver compared to AI, whereas HIP and HIS further decreased Zn and Cu in the liver and diminished colonic and fecal trace minerals. Conclusions: Early-infancy excessive iron fortification causes iron overload and compromises Zn and Cu absorption. Inulin decreases trace mineral absorption likely by enhancing gut peristalsis and stool frequency.

13.
Adv Mater ; 36(6): e2309936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016113

RESUMO

Single-molecule techniques are powerful microscopy methods that provide new insights into biological processes. Liquid-phase transmission electron microscopy (LP-TEM) is an ideal single-molecule technique for overcoming the poor spatiotemporal resolution of optical approaches. However, single-molecule LP-TEM is limited by several challenges such as electron-beam-induced molecular damage, difficulty in identifying biomolecular species, and a lack of analytical approaches for conformational dynamics. Herein, a single-molecule graphene liquid-cell TEM (GLC-TEM) technique that enables the investigation of real-time structural perturbations of intact amyloid fibrils is presented. It is demonstrated that graphene membranes significantly extend the observation period of native amyloid beta proteins without causing oxidative damage owing to electron beams, which is necessary for imaging. Stochastic and time-resolved investigations of single fibrils reveal that structural perturbations in the early fibrillar stage are responsible for the formation of various amyloid polymorphs. The advantage of observing structural behavior in real time with unprecedented resolution will potentially make GLC-TEM a complementary approach to other single-molecule techniques.


Assuntos
Grafite , Grafite/química , Amiloide/química , Elétrons , Peptídeos beta-Amiloides , Microscopia Eletrônica de Transmissão
14.
Sci Adv ; 10(3): eadj6417, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232154

RESUMO

Utilization of in situ/operando methods with broad beams and localized probes has accelerated our understanding of fluid-surface interactions in recent decades. The closed-cell microchips based on silicon nitride (SiNx) are widely used as "nanoscale reactors" inside the high-vacuum electron microscopes. However, the field has been stalled by the high background scattering from encapsulation (typically ~100 nanometers) that severely limits the figures of merit for in situ performance. This adverse effect is particularly notorious for gas cell as the sealing membranes dominate the overall scattering, thereby blurring any meaningful signals and limiting the resolution. Herein, we show that by adopting the back-supporting strategy, encapsulating membrane can be reduced substantially, down to ~10 nanometers while maintaining structural resiliency. The systematic gas cell work demonstrates advantages in figures of merit for hitherto the highest spatial resolution and spectral visibility. Furthermore, this strategy can be broadly adopted into other types of microchips, thus having broader impact beyond the in situ/operando fields.

15.
Sci Rep ; 13(1): 3623, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869139

RESUMO

We demonstrate a full C-band wavelength-tunable mode-locked fiber laser with a repetition rate of 250 MHz, representing the highest repetition rate for C-band tunable mode-locked lasers thus far to the best of our knowledge. The polarization-maintaining fiber-based Fabry-Perot cavity enables a fundamental repetition rate of 250 MHz with a semiconductor saturable absorber mirror as a mode-locker. We observed a stable and single soliton mode-locking state with wide tunability of the center wavelength from 1505 to 1561 nm by adjusting the incident angle of a bandpass filter inside the cavity. The wavelength-tunable high-repetition-rate mode-locked laser covering the full C-band is expected to be a compelling source for many frequency-comb-based applications, including high-precision optical metrology, broadband absorption spectroscopy, and broadband optical frequency synthesizers.

16.
Sci Rep ; 13(1): 15379, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717094

RESUMO

The sustainability of human societies is contingent upon our ability to accurately predict the effects of future climate change on the global environment and humanity. Wise responses to forthcoming environmental alterations require extensive knowledge from historical precedents. However, in coastal East Asia, a region with a long history of agriculture, it is challenging to obtain paleoenvironmental proxy data without anthropogenic disturbances that can be used to assess the impact of late Holocene climate change on local communities. This study introduces a high-resolution multi-proxy sedimentary record from an isolated crater in Jeju Island, Korea, to elucidate the mechanisms underlying mid-to-late Holocene climate change and its impacts on ancient societies. Our findings suggest that hydroclimate changes were predominantly governed by sea surface temperature fluctuations in the western tropical Pacific, with low-frequency variability in solar activity and a decrease in summer insolation identified as primary drivers of temperature change. Moreover, ancient societies on the Korean peninsula were significantly affected by recurring cooling events, including the 2.8 ka event, 2.3 ka event, Late Antique Little Ice Age, maunder minimum, and others.

17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38044688

RESUMO

Enterotoxigenic Escherichia coli (ETEC) causes post-weaning diarrhea in piglets, significantly impacting animal welfare and production efficiency. The two primary ETEC pathotypes associated with post-weaning diarrhea are ETEC F4 and ETEC F18. During the post-weaning period, piglets may be exposed to both ETEC F4 and ETEC F18. However, the effects of coinfection by both strains have not been studied. Short chain fatty acid feed additives, such as butyrate and valerate, are being investigated for their potential to improve animal performance and disease resistance. Therefore, this pilot experiment aimed to test the effects of butyrate glycerides or valerate glycerides on growth performance, diarrhea incidence, and immune responses of piglets under ETEC F4-ETEC F18 coinfection conditions. Twenty piglets were individually housed and assigned to one of the three dietary treatments immediately at weaning (21 to 24 d of age). The dietary treatments included control (basal diet formulation), control supplemented with 0.1% butyrate glycerides or 0.1% valerate glycerides. After a 7-d adaptation, all pigs were inoculated with ETEC F4 and ETEC F18 (0.5 × 109 CFU/1.5 mL dose for each strain) on three consecutive days. Pigs and feeders were weighed throughout the trial to measure growth performance. Fecal cultures were monitored for hemolytic coliforms, and blood samples were collected for whole blood and serum analysis. Pigs fed valerate glycerides tended (P = 0.095) to have higher final body weight compared with control. The overall severity of diarrhea was significantly (P < 0.05) lower in both treatment groups than control. Pigs fed valerate glycerides tended (P = 0.061) to have lower neutrophils and had significantly (P < 0.05) lower serum TNF-α on day 4 post-inoculation. This pilot experiment established an appropriate experimental dose for an ETEC F4-ETEC F18 coinfection disease model in weaned piglets. Results also suggest that butyrate glycerides and valerate glycerides alleviated diarrhea and regulated immune responses in piglets coinfected with ETEC F4 and ETEC F18.


Piglets suffer from post-weaning diarrhea associated with Enterotoxigenic Escherichia coli (ETEC) F4 and F18, two prevalent strains on swine farms globally. Short chain fatty acids (SCFAs), such as butyrate and valerate, are natural, organic compounds that could potentially promote intestinal health when used as dietary supplements. During the post-weaning period, piglets are vulnerable to simultaneous infection by ETEC F4 and F18. Therefore, this experiment aimed to develop an experimental disease model for coinfection with ETEC F4 and F18, employing a dose of 0.5 × 109 CFU/1.5 mL of each strain, administered over three consecutive days. In addition, the experiment evaluated treatment diets supplemented with 0.1% butyrate or valerate glycerides compared with the control diet. Results from this experiment revealed that the inoculation dose incited infection and diarrhea in piglets, implying its suitability for use in a disease challenge model. Moreover, the results indicated that the inclusion of butyrate and valerate glycerides to pig's diet reduced the severity of diarrhea. Furthermore, pigs fed SCFA glycerides exhibited lowered levels of inflammatory blood markers. In conclusion, the experimental dose induced diarrhea in piglets, and dietary supplementation of butyrate and valerate glycerides alleviated the severity of diarrhea while augmenting inflammatory status.


Assuntos
Coinfecção , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Escherichia coli Enterotoxigênica/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Butiratos/farmacologia , Valeratos/farmacologia , Valeratos/uso terapêutico , Coinfecção/veterinária , Diarreia/veterinária , Dieta/veterinária , Imunidade , Doenças dos Suínos/tratamento farmacológico , Ração Animal/análise
18.
Opt Express ; 20(18): 20078-89, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037060

RESUMO

We describe a method to simultaneously measure thickness variation and refractive index homogeneity of 300 mm diameter silicon wafers using a wavelength-shifting Fizeau interferometer operating at 1550 nm. Only three measurements are required, corresponding to three different cavity configurations. A customized phase shifting algorithm is used to suppress several high order harmonics and minimize intensity sampling errors. The new method was tested with both silicon and fused silica wafers and measurement results proved to be highly repeatable. The reliability of the method was further verified by comparing the measured thickness variation of a 150 mm diameter wafer to a measurement of the wafer flatness after bonding the wafer to an optical flat.


Assuntos
Algoritmos , Teste de Materiais/métodos , Refratometria/métodos , Silício/química
19.
Opt Express ; 20(11): 12184-90, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22714206

RESUMO

We have proposed a modified method to improve the measurement uncertainty of the geometrical thickness and refractive index of a silicon wafer. Because measurement resolution based on Fourier domain analysis depends on the spectral bandwidth of a light source directly, a femtosecond pulse laser having the broad spectral bandwidth of about 100 nm was adopted as a new light source. A phase detection algorithm in Fourier domain was also modified to minimize the effect related to environmental disturbance. Since the wide spectral bandwidth may cause a dispersion effect in the optical parts of the proposed interferometer, it was considered carefully through numerical simulations. In conclusion, the measurement uncertainty of geometrical thickness was estimated to be 48 nm for a double-polished silicon wafer having the geometrical thickness of 320.7 µm, which was an improvement of about 20 times that obtained by the previous method.


Assuntos
Algoritmos , Interferometria/instrumentação , Lasers , Refratometria/instrumentação , Refratometria/métodos , Silício/química , Interpretação Estatística de Dados
20.
Environ Sci Technol ; 46(22): 12510-8, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23110548

RESUMO

A simple and rapid room-temperature aerosol deposition method was used to fabricate TiO(2) films for photokilling/photdegradation applications. TiO(2) particles were accelerated to supersonic speeds and fractured upon impacting a glass substrate to form a functional thin film, a process known as aerosol deposition. After deposition, the films were annealed at various temperatures, and their photokilling/photodegradation performances following ultraviolet (UV) exposure were evaluated by counting the number of surviving bacterial colonies, and by a methylene blue decolorization test. The photocatalytic performances of all TiO(2) films were obtained under weak UV exposure (0.6 mW/cm(2)). The film density, crystalline phase, and surface roughness (morphology) were measured by scanning electron microscopy, X-ray diffraction, UV-visible spectroscopy, and atomic force microscopy. The unique, self-assembled honeycomb structure of the aerosol deposited films contributed to the increase in surface area because of extreme roughness, which enhances the photokilling and photodegradation performance. Nonannealed films yielded the best photocatalytic performance due to their small crystalline sizes and large surface areas due to increased surface roughness.


Assuntos
Antibacterianos/química , Titânio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Aerossóis/química , Contagem de Colônia Microbiana , Azul de Metileno/química , Microscopia , Fotólise , Análise Espectral , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA