Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 83(1): 352-366, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31385628

RESUMO

PURPOSE: To establish peripheral nerve stimulation (PNS) thresholds for an ultra-high performance magnetic field gradient subsystem (simultaneous 200-mT/m gradient amplitude and 500-T/m/s gradient slew rate; 1 MVA per axis [MAGNUS]) designed for neuroimaging with asymmetric transverse gradients and 42-cm inner diameter, and to determine PNS threshold dependencies on gender, age, patient positioning within the gradient subsystem, and anatomical landmarks. METHODS: The MAGNUS head gradient was installed in a whole-body 3T scanner with a custom 16-rung bird-cage transmit/receive RF coil compatible with phased-array receiver brain coils. Twenty adult subjects (10 male, mean ± SD age = 40.4 ± 11.1 years) underwent the imaging and PNS study. The tests were repeated by displacing subject positions by 2-4 cm in the superior-inferior and anterior-posterior directions. RESULTS: The x-axis (left-right) yielded mostly facial stimulation, with mean ΔGmin = 111 ± 6 mT/m, chronaxie = 766 ± 76 µsec. The z-axis (superior-inferior) yielded mostly chest/shoulder stimulation (123 ± 7 mT/m, 620 ± 62 µsec). Y-axis (anterior-posterior) stimulation was negligible. X-axis and z-axis thresholds tended to increase with age, and there was negligible dependency with gender. Translation in the inferior and posterior directions tended to increase the x-axis and z-axis thresholds, respectively. Electric field simulations showed good agreement with the PNS results. Imaging at MAGNUS gradient performance with increased PNS threshold provided a 35% reduction in noise-to-diffusion contrast as compared with whole-body performance (80 mT/m gradient amplitude, 200 T/m/sec gradient slew rate). CONCLUSION: The PNS threshold of MAGNUS is significantly higher than that for whole-body gradients, which allows for diffusion gradients with short rise times (under 1 msec), important for interrogating brain microstructure length scales.


Assuntos
Encéfalo/diagnóstico por imagem , Estimulação Elétrica , Campos Magnéticos , Neuroimagem/instrumentação , Neuroimagem/métodos , Nervos Periféricos/diagnóstico por imagem , Sistema Nervoso Periférico/diagnóstico por imagem , Adulto , Algoritmos , Desenho de Equipamento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nervos Periféricos/fisiologia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Imagem Corporal Total
2.
Magn Reson Med ; 83(6): 2356-2369, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31763726

RESUMO

PURPOSE: To develop a highly efficient magnetic field gradient coil for head imaging that achieves 200 mT/m and 500 T/m/s on each axis using a standard 1 MVA gradient driver in clinical whole-body 3.0T MR magnet. METHODS: A 42-cm inner diameter head-gradient used the available 89- to 91-cm warm bore space in a whole-body 3.0T magnet by increasing the radial separation between the primary and the shield coil windings to 18.6 cm. This required the removal of the standard whole-body gradient and radiofrequency coils. To achieve a coil efficiency ~4× that of whole-body gradients, a double-layer primary coil design with asymmetric x-y axes, and symmetric z-axis was used. The use of all-hollow conductor with direct fluid cooling of the gradient coil enabled ≥50 kW of total heat dissipation. RESULTS: This design achieved a coil efficiency of 0.32 mT/m/A, allowing 200 mT/m and 500 T/m/s for a 620 A/1500 V driver. The gradient coil yielded substantially reduced echo spacing, and minimum repetition time and echo time. In high b = 10,000 s/mm2 diffusion, echo time (TE) < 50 ms was achieved (>50% reduction compared with whole-body gradients). The gradient coil passed the American College of Radiology tests for gradient linearity and distortion, and met acoustic requirements for nonsignificant risk operation. CONCLUSIONS: Ultra-high gradient coil performance was achieved for head imaging without substantial increases in gradient driver power in a whole-body 3.0T magnet after removing the standard gradient coil. As such, any clinical whole-body 3.0T MR system could be upgraded with 3-4× improvement in gradient performance for brain imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Acústica , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Campos Magnéticos
3.
Magn Reson Med ; 80(5): 2232-2245, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29536587

RESUMO

PURPOSE: To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. METHODS: A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. RESULTS: In a comparison of anatomical imaging in 16 patients using T2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. CONCLUSIONS: The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imagem Corporal Total/instrumentação , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Feminino , Humanos , Imageamento Tridimensional , Imãs , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído
4.
Magn Reson Med ; 75(2): 897-905, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25772214

RESUMO

PURPOSE: To design, build, and characterize the performance of a novel 3T, 31-channel breast coil. METHODS: A flexible breast coil, accommodating all breast sizes while preserving close to unity filling factors in all configurations, was designed and built. Its performance was compared to the performance of the current state-of-the-art, 16 channel breast coil (Sentinelle coil, Hologic, Bedford, MA, USA), in phantoms and in vivo. RESULTS: Better axilla coverage and lower inter-coil coupling (12% versus 26%, as characterized by the average off-diagonal elements of the noise correlation matrix) was exhibited by our 31-channel coil compared with the 16-channel coil. Breast area signal-to-noise ratio increases of 68% (phantom) and 28% ± 31% (in vivo) were observed when the 31-channel coil was used. For the 31-channel/16-channel arrays, respectively, two-dimensional acceleration factors of left/right × superior/inferior = 4.3 × 2.4 resulted in average g-factors of 1.10/1.68 (in vitro) and 1.28/2.75 (in vivo); acceleration factors of left/right × anterior/posterior = 3.0 × 2.8 resulted in average g-factors of 1.06/1.54 (in vitro) and 1.05/1.12 (in vivo). CONCLUSION: A high performance breast coil was built; its capabilities were demonstrated in phantom and normal volunteer imaging experiments.


Assuntos
Mama/anatomia & histologia , Imageamento por Ressonância Magnética/instrumentação , Desenho de Equipamento , Feminino , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
5.
Magn Reson Imaging ; 114: 110224, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39232996

RESUMO

We report use of a dual-density dielectric barrier surrounding a detachable high-pass radiofrequency (RF) birdcage coil to achieve an order-of-magnitude reduction of acoustic noise in a high-performance head gradient system. The barrier consisted of a 4.5 mm-thick mass-loaded vinyl and a 6 mm-thick polyurethane foam. It was inserted into the radial gap between the birdcage coil and the RF shield in a prototype head-only gradient system at 3 T. More than 9 dBA reduction of sound pressure level was achieved on the average with representative, high acoustic-noise imaging sequences. Increased acoustic damping was apparent from acoustic impulse response functions. High dielectric constant of the mass-loaded vinyl effectively added distributed capacitance to the birdcage coil, lowering the resonance frequency, but not seriously degrading the RF transmission performance. The barrier occupied the radial space normally used for air cooling of the RF coil and the RF shield. The resulting omission of air cooling was found to be acceptable with efficient gradient thermal management and use of a high-resistivity RF shield for eddy current reduction. The proposed method can improve patient experience while preserving image quality in a high-power head-only gradient system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA