Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716885

RESUMO

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

2.
Inorg Chem ; 61(15): 5683-5690, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35389623

RESUMO

Regeneration of nicotinamide adenine dinucleotide (NADH) has been the primary interest in the field of enzymatic transformation, especially associating oxidoreductases given the stoichiometric consumption. The synthesized carbene-ligated rhodium complex [(η5-Cp*)Rh(MDI)Cl]+ [Cp* = pentamethylcyclopentadienyl; MDI = 1,1'-methylenebis(3,3'-dimethylimidazolium)] acts as an exceptional catalyst in the reduction of NAD+ to NADH with a turnover frequency of 1730 h-1, which is over twice that of the higher catalytic activity of the commercially available catalyst [Cp*Rh(bpy)Cl]+ (bpy = 2,2'-bipyridine). Offsetting the contentious atmosphere currently taking place over the specific intermediate of the NADH regeneration, this study presents pivotal evidence of a metal hydride intermediate with a bis(carbene) ligand: a stable form of the rhodium hydride intermediate, [(η5-Cp*)Rh(MDI)H]+, was isolated and fully characterized. This enables thorough insight into the possible mechanism and exact intermediate structure in the NAD+ reduction process.


Assuntos
Ródio , Metano/análogos & derivados , NAD/química , Oxirredução , Regeneração , Ródio/química
3.
J Am Chem Soc ; 143(39): 16007-16029, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34570980

RESUMO

Methanotrophic bacteria utilize the nonheme diiron enzyme soluble methane monooxygenase (sMMO) to convert methane to methanol in the first step of their metabolic cycle under copper-limiting conditions. The structure of the sMMO Fe(IV)2 intermediate Q responsible for activating the inert C-H bond of methane (BDE = 104 kcal/mol) remains controversial, with recent studies suggesting both "open" and "closed" core geometries for its active site. In this study, we employ nuclear resonance vibrational spectroscopy (NRVS) to probe the geometric and electronic structure of intermediate Q at cryogenic temperatures. These data demonstrate that Q decays rapidly during the NRVS experiment. Combining data from several years of measurements, we derive the NRVS vibrational features of intermediate Q as well as its cryoreduced decay product. A library of 90 open and closed core models of intermediate Q is generated using density functional theory to analyze the NRVS data of Q and its cryoreduced product as well as prior spectroscopic data on Q. Our analysis reveals that a subset of closed core models reproduce these newly acquired NRVS data as well as prior data. The reaction coordinate with methane is also evaluated using both closed and open core models of Q. These studies show that the potent reactivity of Q toward methane resides in the "spectator oxo" of its Fe(IV)2O2 core, in contrast to nonheme mononuclear Fe(IV)═O enzyme intermediates that H atoms abstract from weaker C-H bonds.


Assuntos
Compostos de Ferro/química , Oxigenases/química , Oxigenases/metabolismo , Análise Espectral/métodos , Estrutura Molecular , Teoria Quântica
4.
J Am Chem Soc ; 142(9): 4173-4183, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32057242

RESUMO

High-valent Ni complexes have proven to be good platforms for diverse cross-coupling reactions that are otherwise difficult to be achieved with conventional low-valent catalysts. However, their reductive elimination (RE) activities are still significantly variable by up to 5 orders of magnitude, depending on the supporting ligand and oxidation state of the Ni center. To elucidate frontier molecular orbitals (FMOs) that determine the RE activity of the Ni center, the electronic structures of cycloneophyl (CH2C(CH3)2-o-C6H4) NiIII and NiIV complexes have been characterized by utilizing various transition metal-based spectroscopic techniques such as electronic absorption, magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and X-ray absorption spectroscopies. In combination with density functional theory computations, the spectroscopic analyses have shown that the energies of the C-to-Ni charge-transfer (CT) electronic transitions are strongly correlated to the rates of C-C bond-forming RE reaction. This correlation suggests that the kinetic barrier of the RE reaction is determined by energy cost for internal CT (ICT) from the coordinated carbon moiety to the Ni center, and that FMOs involved in the RE reaction and the C-to-Ni CT electronic transitions are essentially identical. This FMO determination has led us to discover that photoexcitation to the C-to-Ni CT excited states accelerates the C-C cross-coupling reaction by up to 105 times, as the CT electronic transition can substitute for the rate-determining ICT step of the RE reaction at the ground electronic state.

5.
J Am Chem Soc ; 142(44): 18886-18896, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33103886

RESUMO

The α-ketoglutarate (αKG)-dependent oxygenases catalyze a diverse range of chemical reactions using a common high-spin FeIV═O intermediate that, in most reactions, abstract a hydrogen atom from the substrate. Previously, the FeIV═O intermediate in the αKG-dependent halogenase SyrB2 was characterized by nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations, which demonstrated that it has a trigonal-pyramidal geometry with the scissile C-H bond of the substrate calculated to be perpendicular to the Fe-O bond. Here, we have used NRVS and DFT calculations to show that the FeIV═O complex in taurine dioxygenase (TauD), the αKG-dependent hydroxylase in which this intermediate was first characterized, also has a trigonal bipyramidal geometry but with an aspartate residue replacing the equatorial halide of the SyrB2 intermediate. Computational analysis of hydrogen atom abstraction by square pyramidal, trigonal bipyramidal, and six-coordinate FeIV═O complexes in two different substrate orientations (one more along [σ channel] and another more perpendicular [π channel] to the Fe-O bond) reveals similar activation barriers. Thus, both substrate approaches to all three geometries are competent in hydrogen atom abstraction. The equivalence in reactivity between the two substrate orientations arises from compensation of the promotion energy (electronic excitation within the d manifold) required to access the π channel by the significantly larger oxyl character present in the pπ orbital oriented toward the substrate, which leads to an earlier transition state along the C-H coordinate.


Assuntos
Hidrogênio/química , Ferro/química , Oxigênio/química , Catálise , Teoria da Densidade Funcional , Dioxigenases/química , Dioxigenases/metabolismo , Hidrogênio/metabolismo , Ácidos Cetoglutáricos/química , Espectroscopia de Ressonância Magnética
6.
Nature ; 499(7458): 320-3, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23868262

RESUMO

Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neurotransmitters, the hypoxic response and the biosynthesis of secondary metabolites. The reactive intermediate in the catalytic cycles of these enzymes is a high-spin S = 2 Fe(IV)=O species, which has been trapped for a number of NHFe enzymes, including the halogenase SyrB2 (syringomycin biosynthesis enzyme 2). Computational studies aimed at understanding the reactivity of this Fe(IV)=O intermediate are limited in applicability owing to the paucity of experimental knowledge about its geometric and electronic structure. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes involving Fe on the nature of the Fe(IV)=O active site. Here we present NRVS structural characterization of the reactive Fe(IV)=O intermediate of a NHFe enzyme, namely the halogenase SyrB2 from the bacterium Pseudomonas syringae pv. syringae. This intermediate reacts via an initial hydrogen-atom abstraction step, performing subsequent halogenation of the native substrate or hydroxylation of non-native substrates. A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate directs the orientation of the Fe(IV)=O intermediate, presenting specific frontier molecular orbitals that can activate either selective halogenation or hydroxylation.


Assuntos
Ferro/química , Oxirredutases/química , Biocatálise , Halogenação , Hidroxilação , Oxirredutases/metabolismo , Pseudomonas syringae/enzimologia
7.
J Am Chem Soc ; 140(16): 5544-5559, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29618204

RESUMO

The Rieske dioxygenases are a major subclass of mononuclear nonheme iron enzymes that play an important role in bioremediation. Recently, a high-spin FeIII-(hydro)peroxy intermediate (BZDOp) has been trapped in the peroxide shunt reaction of benzoate 1,2-dioxygenase. Defining the structure of this intermediate is essential to understanding the reactivity of these enzymes. Nuclear resonance vibrational spectroscopy (NRVS) is a recently developed synchrotron technique that is ideal for obtaining vibrational, and thus structural, information on Fe sites, as it gives complete information on all vibrational normal modes containing Fe displacement. In this study, we present NRVS data on BZDOp and assign its structure using these data coupled to experimentally calibrated density functional theory calculations. From this NRVS structure, we define the mechanism for the peroxide shunt reaction. The relevance of the peroxide shunt to the native FeII/O2 reaction is evaluated. For the native FeII/O2 reaction, an FeIII-superoxo intermediate is found to react directly with substrate. This process, while uphill thermodynamically, is found to be driven by the highly favorable thermodynamics of proton-coupled electron transfer with an electron provided by the Rieske [2Fe-2S] center at a later step in the reaction. These results offer important insight into the relative reactivities of FeIII-superoxo and FeIII-hydroperoxo species in nonheme Fe biochemistry.


Assuntos
Comamonas/enzimologia , Dioxigenases/metabolismo , Ferro/metabolismo , Peróxidos/metabolismo , Comamonas/química , Comamonas/metabolismo , Dioxigenases/química , Ferro/química , Modelos Moleculares , Peróxidos/química , Análise Espectral , Termodinâmica
8.
J Am Chem Soc ; 140(48): 16495-16513, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418018

RESUMO

The extradiol dioxygenases are a large subclass of mononuclear nonheme Fe enzymes that catalyze the oxidative cleavage of catechols distal to their OH groups. These enzymes are important in bioremediation, and there has been significant interest in understanding how they activate O2. The extradiol dioxygenase homoprotocatechuate 2,3-dioxygenase (HPCD) provides an opportunity to study this process, as two O2 intermediates have been trapped and crystallographically defined using the slow substrate 4-nitrocatechol (4NC): a side-on Fe-O2-4NC species and a Fe-O2-4NC peroxy bridged species. Also with 4NC, two solution intermediates have been trapped in the H200N variant, where H200 provides a second-sphere hydrogen bond in the wild-type enzyme. While the electronic structure of these solution intermediates has been defined previously as FeIII-superoxo-catecholate and FeIII-peroxy-semiquinone, their geometric structures are unknown. Nuclear resonance vibrational spectroscopy (NRVS) is an important tool for structural definition of nonheme Fe-O2 intermediates, as all normal modes with Fe displacement have intensity in the NRVS spectrum. In this study, NRVS is used to define the geometric structure of the H200N-4NC solution intermediates in HPCD as an end-on FeIII-superoxo-catecholate and an end-on FeIII-hydroperoxo-semiquinone. Parallel calculations are performed to define the electronic structures and protonation states of the crystallographically defined wild-type HPCD-4NC intermediates, where the side-on intermediate is found to be a FeIII-hydroperoxo-semiquinone. The assignment of this crystallographic intermediate is validated by correlation to the NRVS data through computational removal of H200. While the side-on hydroperoxo semiquinone intermediate is computationally found to be nonreactive in peroxide bridge formation, it is isoenergetic with a superoxo catecholate species that is competent in performing this reaction. This study provides insight into the relative reactivities of FeIII-superoxo and FeIII-hydroperoxo intermediates in nonheme Fe enzymes and into the role H200 plays in facilitating extradiol catalysis.


Assuntos
Proteínas de Bactérias/química , Catecóis/química , Complexos de Coordenação/química , Dioxigenases/química , Oxigênio/química , Proteínas de Bactérias/genética , Brevibacterium/enzimologia , Cristalografia por Raios X , Teoria da Densidade Funcional , Dioxigenases/genética , Histidina/química , Ferro/química , Modelos Químicos , Estrutura Molecular , Mutação , Análise Espectral/métodos , Vibração
9.
J Am Chem Soc ; 139(20): 7062-7070, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28457126

RESUMO

Binuclear non-heme iron enzymes activate O2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.


Assuntos
Proteínas de Bactérias/química , Oxigenases/química , Peróxidos/metabolismo , Teoria Quântica , Estrutura Molecular , Peróxidos/química
10.
J Am Chem Soc ; 139(6): 2234-2244, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28098992

RESUMO

An amyloidogenic peptide, amyloid-ß (Aß), has been implicated as a contributor to the neurotoxicity of Alzheimer's disease (AD) that continues to present a major socioeconomic burden for our society. Recently, the use of metal complexes capable of cleaving peptides has arisen as an efficient tactic for amyloid management; unfortunately, little has been reported to pursue this strategy. Herein, we report a novel approach to validate the hydrolytic cleavage of divalent metal complexes toward two major isoforms of Aß (Aß40 and Aß42) and tune their proteolytic activity based on the choice of metal centers (M = Co, Ni, Cu, and Zn) which could be correlated to their anti-amyloidogenic properties. Such metal-dependent tunability was facilitated employing a tetra-N-methylated cyclam (TMC) ligand that imparts unique geometric and stereochemical control, which has not been available in previous systems. Co(II)(TMC) was identified to noticeably cleave Aß peptides and control their aggregation, reporting the first Co(II) complex for such reactivities to the best of our knowledge. Through detailed mechanistic investigations by biochemical, spectroscopic, mass spectrometric, and computational studies, the critical importance of the coordination environment and acidity of the aqua-bound complexes in promoting amide hydrolysis was verified. The biological applicability of Co(II)(TMC) was also illustrated via its potential blood-brain barrier permeability, relatively low cytotoxicity, regulatory capability against toxicity induced by both Aß40 and Aß42 in living cells, proteolytic activity with Aß peptides under biologically relevant conditions, and inertness toward cleavage of structured proteins. Overall, our approaches and findings on reactivities of divalent metal complexes toward Aß, along with the mechanistic insights, demonstrate the feasibility of utilizing such metal complexes for amyloid control.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Compostos Heterocíclicos/farmacologia , Metais Pesados/farmacologia , Compostos Organometálicos/farmacologia , Peptídeos beta-Amiloides/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Heterocíclicos/química , Humanos , Hidrólise , Metais Pesados/química , Estrutura Molecular , Compostos Organometálicos/química
11.
J Biol Inorg Chem ; 21(5-6): 575-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27369780

RESUMO

Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the µ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the µ-OH bridge and the second electron transferring through the resulting µ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.


Assuntos
Ferroproteínas não Heme/química , Ferroproteínas não Heme/metabolismo , Domínio Catalítico , Teoria Quântica
12.
J Biol Inorg Chem ; 21(5-6): 669-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27383231

RESUMO

The human-type ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri (LrPduO) catalyzes the adenosylation of Co(II)rrinoids to generate adenosylcobalamin (AdoCbl) or adenosylcobinamide (AdoCbi(+)). This process requires the formation of "supernucleophilic" Co(I)rrinoid intermediates in the enzyme active site which are properly positioned to abstract the adeonsyl moiety from co-substrate ATP. Previous magnetic circular dichroism (MCD) spectroscopic and X-ray crystallographic analyses revealed that LrPduO achieves the thermodynamically challenging reduction of Co(II)rrinoids by displacing the axial ligand with a non-coordinating phenylalanine residue to produce a four-coordinate species. However, relatively little is currently known about the interaction between the tetradentate equatorial ligand of Co(II)rrinoids (the corrin ring) and the enzyme active site. To address this issue, we have collected resonance Raman (rR) data of Co(II)rrinoids free in solution and bound to the LrPduO active site. The relevant resonance-enhanced vibrational features of the free Co(II)rrinoids are assigned on the basis of rR intensity calculations using density functional theory to establish a suitable framework for interpreting rR spectral changes that occur upon Co(II)rrinoid binding to the LrPduO/ATP complex in terms of structural perturbations of the corrin ring. To complement our rR data, we have also obtained MCD spectra of Co(II)rrinoids bound to LrPduO complexed with the ATP analogue UTP. Collectively, our results provide compelling evidence that in the LrPduO active site, the corrin ring of Co(II)rrinoids is firmly locked in place by several amino acid side chains so as to facilitate the dissociation of the axial ligand.


Assuntos
Trifosfato de Adenosina/química , Aldeído Oxirredutases/química , Cobalto/química , Limosilactobacillus reuteri/enzimologia , Vitamina B 12/química , Trifosfato de Adenosina/metabolismo , Aldeído Oxirredutases/metabolismo , Cobalto/metabolismo , Teoria Quântica , Análise Espectral Raman , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo
13.
J Cosmet Laser Ther ; 18(1): 16-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26052812

RESUMO

BACKGROUND: Nonablative lasers have been widely used to improve photodamaged skin, although the mechanism underlying dermal collagen remodeling remains unclear. OBJECTIVE: To investigate the effects and the molecular mechanisms of long-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on dermal collagen remodeling in association with different pulse durations. MATERIAL AND METHODS: Five hairless mice were pretreated with ultraviolet B irradiation for 8 weeks. The dorsal quadrant of each mouse was then irradiated twice at 1-week intervals at a pulse duration of 1 ms, 12 ms, or 50 ms, and a constant fluence of 20 J/cm(2). The levels of dermal collagen, mRNAs of procollagens, matrix metalloproteinases (MMPs), tissue inhibitor of metalloproteinases (TIMPs), and various growth factors were analyzed after 4 weeks. RESULTS: Long-pulse Nd:YAG treatment increased the dermal collagen level. A substantial increase in the level of procollagens, MMPs, TIMPs, and various growth factors was also observed irrespective of pulse duration, with a trend toward maximal increase at a pulse duration of 12 ms. CONCLUSION: Long-pulse 1,064-nm Nd:YAG laser irradiation promotes wound-healing process, which is characterized by the induction of growth factor expression and subsequent increase in MMPs and TIMPs, followed by matrix remodeling as confirmed by new procollagen production.


Assuntos
Expressão Gênica/efeitos da radiação , Lasers de Estado Sólido , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Pelados , Fator de Crescimento Derivado de Plaquetas/genética , RNA Mensageiro/metabolismo , Pele/patologia , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Fator de Crescimento Transformador beta1/genética
14.
Proc Natl Acad Sci U S A ; 110(16): 6275-80, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576760

RESUMO

High-valent intermediates of binuclear nonheme iron enzymes are structurally unknown despite their importance for understanding enzyme reactivity. Nuclear resonance vibrational spectroscopy combined with density functional theory calculations has been applied to structurally well-characterized high-valent mono- and di-oxo bridged binuclear Fe model complexes. Low-frequency vibrational modes of these high-valent diiron complexes involving Fe motion have been observed and assigned. These are independent of Fe oxidation state and show a strong dependence on spin state. It is important to note that they are sensitive to the nature of the Fe2 core bridges and provide the basis for interpreting parallel nuclear resonance vibrational spectroscopy data on the high-valent oxo intermediates in the binuclear nonheme iron enzymes.


Assuntos
Enzimas/química , Compostos Férricos/química , Modelos Químicos , Espectroscopia de Mossbauer/métodos , Cristalografia por Raios X , Enzimas/metabolismo , Compostos Férricos/metabolismo , Estrutura Molecular , Oxirredução , Vibração
15.
Int J Mol Sci ; 16(3): 4379-91, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25706512

RESUMO

Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Cabelo/efeitos dos fármacos , Queratinócitos/metabolismo , Células-Tronco/metabolismo , Anfirregulina/genética , Anfirregulina/metabolismo , Animais , Antígenos CD/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Cabelo/crescimento & desenvolvimento , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Integrina alfa6/metabolismo , Camundongos Endogâmicos C3H , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Angew Chem Int Ed Engl ; 54(24): 7158-61, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25914129

RESUMO

Three distinct families of ATP:corrinoid adenosyltransferases (ACATs) exist that are capable of converting vitamin B12 derivatives into coenzyme B12 by catalyzing the thermodynamically challenging reduction of Co(II) rrinoids to form "supernucleophilic" Co(I) intermediates. While the structures and mechanisms of two of the ACAT families have been studied extensively, little is known about the EutT enzymes beyond the fact that they exhibit a unique requirement for a divalent metal cofactor for enzymatic activity. In this study we have obtained compelling evidence that EutT converts cob(II)alamin into an effectively four-coordinate Co(II) species so as to facilitate Co(II)→Co(I) reduction. Intriguingly, EutT fails to promote axial ligand dissociation from the substrate analogue cob(II)inamide, a natural precursor of cob(II)alamin. This unique substrate specificity of EutT has important physiological implications.


Assuntos
Proteínas de Bactérias/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/química , Biocatálise , Cobalto/química , Cobamidas/química , Cobamidas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Salmonella enterica/enzimologia , Transferases/química , Vitamina B 12/química , Vitamina B 12/metabolismo
17.
ACS Appl Mater Interfaces ; 16(3): 3778-3785, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268146

RESUMO

Although recent dramatic advances in power conversion efficiencies (PCEs) have resulted in values over 19%, the poor photostability of organic photovoltaics (OPVs) has been a serious bottleneck to their commercialization. The photocatalytic effect, which is caused by incident ultraviolet-A (UV-A, 320-400 nm) light in the most commonly used zinc oxide (ZnOX) electron transport layer (ETL), significantly deteriorates the photostability of OPVs. In this work, we develop a new and facile method to enhance the photostability of nonfullerene acceptor-based OPVs by introducing UV-A-insensitive titanium suboxide (TiOX) ETL. Through an in-depth analysis of mass information at the interface between the ETL and photoactive layer, we confirm that the UV-A-insensitive TiOX suppresses the photocatalytic effect. The resulting device employing the TiOX ETL shows excellent photostability, obtaining 80% of the initial PCE for up to 200 h under 1 sun illumination, which is 10 times longer than that of the conventional ZnOX system (19 h).

18.
J Am Chem Soc ; 135(46): 17573-84, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24131208

RESUMO

The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe heterobinuclear cofactor, rather than the Fe/Fe cofactor found in the ß (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable Mn(IV)Fe(III) cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the Mn(IV)Fe(III) cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs)/circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the Fe(III), whereas MCD reflects the spin-allowed transitions mostly on the Mn(IV). We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with Mn(IV) at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d and oxo and OH(-) to metal charge-transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the Mn(IV)Fe(III) cofactor as having a µ-oxo, µ-hydroxo core and a terminal hydroxo ligand on the Mn(IV). From DFT calculations, the Mn(IV) at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH(-) terminal ligand on this Mn(IV) provides a high proton affinity that could gate radical translocation to the α (R1) subunit.


Assuntos
Compostos Férricos/química , Manganês/química , Ribonucleotídeo Redutases/química , Chlamydia trachomatis/enzimologia , Cristalografia por Raios X , Elétrons , Compostos Férricos/metabolismo , Manganês/metabolismo , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Ribonucleotídeo Redutases/metabolismo
19.
ACS Appl Mater Interfaces ; 15(36): 42802-42810, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652403

RESUMO

The tailoring of the average photopic transmittance (APT) of transparent organic solar cells (T-OSCs) has been the greatest challenge in building-integrated photovoltaic applications for future smart solar windows to regulate indoor brightness, maintain a human circadian rhythm, and positively impact human emotions by allowing the observation of the external environment. However, a notorious trade-off exists between the APT and power conversion efficiency (PCE) of T-OSCs, mainly due to the absence of highly conductive and transparent top electrodes, which are a key building block determining the PCE and APT. Herein, we demonstrate a new tungsten oxide (WO3)-based multilayer as a highly conductive and transparent top electrode that provides an excellent APT while maintaining a high PCE in T-OSCs. With the assistance of optical simulation based on a transfer matrix method to calculate the optimum thicknesses of the multilayer electrodes, we achieve the best-performing T-OSC with a PCE of 7.0% and a full device APT of 46.7%, resulting in a high light utilization efficiency of 3.27%, which is superior to that of T-OSCs based on the same photoactive system. Furthermore, superior thermal stability at 85 °C in an N2 atmosphere is observed in WO3-based T-OSCs, maintaining 98% of the initial PCE after about 231 h. Our findings provide new insights into the development of T-OSCs with high efficiency and transparency.

20.
Adv Sci (Weinh) ; 10(17): e2206802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097705

RESUMO

Herein, a new ternary strategy to fabricate efficient and photostable inverted organic photovoltaics (OPVs) is introduced by combining a bulk heterojunction (BHJ) blend and a fullerene self-assembled monolayer (C60 -SAM). Time-of-flight secondary-ion mass spectrometry - analysis reveals that the ternary blend is vertically phase separated with the C60 -SAM at the bottom and the BHJ on top. The average power conversion efficiency - of OPVs based on the ternary system is improved from 14.9% to 15.6% by C60 -SAM addition, mostly due to increased current density (Jsc ) and fill factor -. It is found that the C60 -SAM encourages the BHJ to make more face-on molecular orientation because grazing incidence wide-angle X-ray scattering - data show an increased face-on/edge-on orientation ratio in the ternary blend. Light-intensity dependent Jsc data and charge carrier lifetime analysis indicate suppressed bimolecular recombination and a longer charge carrier lifetime in the ternary system, resulting in the enhancement of OPV performance. Moreover, it is demonstrated that device photostability in the ternary blend is enhanced due to the vertically self-assembled C60 -SAM that successfully passivates the ZnO surface and protects BHJ layer from the UV-induced photocatalytic reactions of the ZnO. These results suggest a new perspective to improve both performance and photostability of OPVs using a facial ternary method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA