Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(52): 32939-32946, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318179

RESUMO

The faradaic reaction at the insulator is counterintuitive. For this reason, electroorganic reactions at the dielectric layer have been scarcely investigated despite their interesting aspects and opportunities. In particular, the cathodic reaction at a silicon oxide surface under a negative potential bias remains unexplored. In this study, we utilize defective 200-nm-thick n+-Si/SiO2 as a dielectric electrode for electrolysis in an H-type divided cell to demonstrate the cathodic electroorganic reaction of anthracene and its derivatives. Intriguingly, the oxidized products are generated at the cathode The experiments under various conditions provide consistent evidence supporting that the electrochemically generated hydrogen species, supposedly the hydrogen atom, is responsible for this phenomenon. The electrogenerated hydrogen species at the dielectric layer suggests a synthetic strategy for organic molecules.

2.
Anal Chem ; 92(15): 10504-10511, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32489093

RESUMO

As a novel approach to the in situ real-time investigation of an ITO electrode during the wet etching process, step-excitation Fourier-transform electrochemical impedance spectroscopy (FT-EIS) was implemented. The equivalent circuit parameters (e.g., Rct, Cdl) continuously obtained by the FT-EIS measurements during the entire etching process showed an electrode activation at the initial period as well as the completion of etching. The FT-EIS results were further validated by cyclic voltammograms and impedance measurements of partially etched ITO films using ferri- and ferrocyanide solution in combination with FESEM imaging, EDS, XRD analyses, and COMSOL simulation. We also demonstrated that this technique can be further utilized to obtain intact interdigitated array (IDA) electrodes in a reproducible manner, which is generally considered to be quite tricky due to delicacy of the pattern. Given that the FT-EIS allows for instantaneous snapshots of the electrode at every moment, this work may hold promise for in situ real-time examination of structural, electrokinetic, or mass transfer-related information on electrochemical systems undergoing constantly changing, transient processes including etching, which would be impossible with conventional electroanalytical techniques.

3.
Chem Sci ; 13(30): 8821-8828, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35975145

RESUMO

In ionic liquids (ILs), the electric double layer (EDL) is where heterogeneous electron transfer (ET) occurs. Nevertheless, the relationship between the EDL structure and its kinetics has been rarely studied, especially for ET taking place in the inner Helmholtz plane (IHP). This is largely because of the lack of an appropriate model system for experiments. In this work, we determined the reorganization energy (λ) of Br2 reduction in a redox-active IL 1-ethyl-1-methylpyrrolidinium polybromide (MEPBr2n+1) based on the Marcus-Hush-Chidsey model. Exceptionally fast mass transport of Br2 in MEPBr2n+1 allows voltammograms to be obtained in which the current plateau is regulated by electron-transfer kinetics. This enables investigation of the microscopic environment in the IHP of the IL affecting electrocatalytic reactions through reorganization energy. As a demonstration, TiO2-modified Pt was employed to show pH-dependent reorganization energy, which suggests the switch of major ions at the IHP as a function of surface charges of electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA