Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927025

RESUMO

The exosome multiprotein complex plays a critical role in RNA processing and degradation. This system governs the regulation of mRNA quality, degradation in the cytoplasm, the processing of short noncoding RNA, and the breakdown of RNA fragments. We determined two crystal structures of exosome components from Thermoplasma acidophilum (Taci): one with a resolution of 2.3 Å that reveals the central components (TaciRrp41 and TaciRrp42), and another with a resolution of 3.5 Å that displays the whole exosome (TaciRrp41, TaciRrp42, and TaciRrp4). The fundamental exosome structure revealed the presence of a heterodimeric complex consisting of TaciRrp41 and TaciRrp42. The structure comprises nine subunits, with TaciRrp41 and TaciRrp42 arranged in a circular configuration, while TaciRrp4 is located at the apex. The RNA degradation capabilities of the TaciRrp4:41:42 complex were verified by RNA degradation assays, consistent with prior findings in other archaeal exosomes. The resemblance between archaeal exosomes and bacterial PNPase suggests a common mechanism for RNA degradation. Despite sharing comparable topologies, the surface charge distributions of TaciRrp4 and other archaea structures are surprisingly distinct. Different RNA breakdown substrates may be responsible for this variation. These newfound structural findings enhance our comprehension of RNA processing and degradation in biological systems.


Assuntos
Proteínas Arqueais , Exossomos , Thermoplasma , Thermoplasma/metabolismo , Exossomos/metabolismo , Exossomos/química , Cristalografia por Raios X , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Estabilidade de RNA
2.
EMBO Mol Med ; 15(7): e16940, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37212275

RESUMO

Prolyl-tRNA synthetase 1 (PARS1) has attracted much interest in controlling pathologic accumulation of collagen containing high amounts of proline in fibrotic diseases. However, there are concerns about its catalytic inhibition for potential adverse effects on global protein synthesis. We developed a novel compound, DWN12088, whose safety was validated by clinical phase 1 studies, and therapeutic efficacy was shown in idiopathic pulmonary fibrosis model. Structural and kinetic analyses revealed that DWN12088 binds to catalytic site of each protomer of PARS1 dimer in an asymmetric mode with different affinity, resulting in decreased responsiveness at higher doses, thereby expanding safety window. The mutations disrupting PARS1 homodimerization restored the sensitivity to DWN12088, validating negative communication between PARS1 promoters for the DWN12088 binding. Thus, this work suggests that DWN12088, an asymmetric catalytic inhibitor of PARS1 as a novel therapeutic agent against fibrosis with enhanced safety.


Assuntos
Aminoacil-tRNA Sintetases , Humanos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Fibrose , Prolina/genética , Prolina/metabolismo , Biossíntese de Proteínas
3.
J Neurosci ; 31(49): 18007-12, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159114

RESUMO

The ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD). Evidence suggests that the effect of apoE isoforms on amyloid-ß (Aß) accumulation in the brain plays a critical role in AD pathogenesis. Like in humans, apoE4 expression in animal models that develop Aß amyloidosis results in greater Aß and amyloid deposition than with apoE3 expression. However, whether decreasing levels of apoE3 or apoE4 would promote or attenuate Aß-related pathology has not been directly addressed. To determine the effect of decreasing human apoE levels on Aß accumulation in vivo, we generated human APOE isoform haploinsufficient mouse models by crossing APPPS1-21 mice with APOE isoform knock-in mice. By genetically manipulating APOE gene dosage, we demonstrate that decreasing human apoE levels, regardless of isoform status, results in significantly decreased amyloid plaque deposition and microglial activation. These differences in amyloid load between apoE3- and apoE4-expressing mice were not due to apoE4 protein being present at lower levels than apoE3. These data suggest that current therapeutic strategies to increase apoE levels without altering its lipidation state may actually worsen Aß amyloidosis, while increasing apoE degradation or inhibiting its synthesis may be a more effective treatment approach.


Assuntos
Amiloide/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Apolipoproteínas E/deficiência , Haploinsuficiência/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Apolipoproteínas E/genética , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Isoformas de Proteínas/genética
4.
Biomol Ther (Seoul) ; 20(6): 562-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009851

RESUMO

Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is a self-sufficient monooxygenase that consists of a heme domain and FAD/FMN-containing reductase domain (BMR). In this report, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by BMR was evaluated as a method for monitoring BMR activity. The electron transfer proceeds from NADPH to BMR and then to BMR substrates, MTT and CTC. MTT and CTC are monotetrazolium salts that form formazans upon reduction. The reduction of MTT and CTC followed classical Michaelis-Menten kinetics (kcat =4120 min(-1), Km =77 µM for MTT and kcat =6580 min(-1), Km =51 µM for CTC). Our continuous assay using MTT and CTC allows the simple, rapid measurement of BMR activity. The BMR was able to metabolize mitomycin C and doxorubicin, which are anticancer drug substrates for CPR, producing the same metabolites as those produced by CPR. Moreover, the BMR was able to interact with CYP1A2 and transfer electrons to promote the oxidation reactions of substrates by CYP1A2 and CYP2E1 in humans. The results of this study suggest the possibility of the utilization of BMR as a surrogate for mammalian CPR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA