Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Fluoresc ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190011

RESUMO

In this work, Cassia tora (C. tora) have been used as a template to synthesize green fluorescent C. tora molybdenum nanoclusters (C. tora-MoNCs) through a green chemistry approach. These C. tora-MoNCs showed a quantum yield (QY) of 7.72% and exhibited a significant emission peak at 498 nm when excited at 380 nm. The as-prepared C. tora-MoNCs had an average size of 3.48 ± 0.80 nm and showed different surface functionality. The as-synthesized C. tora-MoNCs were successfully identified the hydroxyl radical (•OH) via a fluorescence quenching mechanism. Also, fluorescence lifetime and Stern-Volmer proved that after the addition of •OH radicals it was quenched the fluorescence intensity via a static quenching mechanism. The limit of detection is 9.13 nM, and this approach was successfully utilized for sensing •OH radicals in water samples with a good recovery rate.

3.
J Fluoresc ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676770

RESUMO

Blue emissive Argyreia nervosa-capped gold nanoclusters (A. nervosa-AuNCs) were synthesized via a simple environment-friendly method. The developed probe exhibits rapid response towards the target analyte (hexaconazole fungicide). Several characterizations, including FT-IR, UV-visible, fluorescence, HR-TEM, XPS, and fluorescence lifetime, were studied to confirm the formation of A. nervosa-AuNCs. The A. nervosa-AuNCs displayed emission and excitation peaks at 470 and 390 nm, respectively. Furthermore, the quantum yield (QY) of A. nervosa-AuNCs was 21.25%. The as-synthesized A. nervosa-AuNCs showed a good linear response with hexaconazole in the concentration range of 0.025-180 µM, with a detection limit (LOD) of 21.94 nM, indicating A. nervosa-AuNCs could be used as a sensitive and selective probe for detecting hexaconazole through a fluorescence "turn-off" mechanism. The A. nervosa-AuNCs were successfully used to detect hexaconazole in real samples. Moreover, A. nervosa-AuNCs were used as a bio-imaging probe for visualization of Saccharomyces cerevisiae cells.

4.
Luminescence ; 39(3): e4709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491906

RESUMO

Fluorescent metal nanoclusters (MNCs) have found extensive application in recognizing molecular species. Here, orange-red fluorescent Arg-A. paniculata-MoNCs were synthesized using Andrographis paniculata leaf extract, arginine as a ligand, and MoCl5 as a metal precursor. The Arg-A. paniculata-MoNCs complex exhibited a quantum yield (QY) of 16.91% and excitation/emission wavelengths of 400/665 nm. The synthesized Arg-A. paniculata-MoNCs successfully acted as a probe for assaying neomycin sulphate (NS) via fluorescence turn-off and K+ ions via fluorescence turn-on mechanisms, respectively. Moreover, the developed probe was effectively used to develop a cellulose paper strip-based sensor for detection of NS and K+ ions. Arg-A. paniculata-MoNCs demonstrated great potential for sensing NS and K+ ions, with concentration ranges of 0.1-80 and 0.25-110 µM for NS and K+ ions, respectively. The as-synthesized Arg-A. paniculata-MoNCs efficiently detected NS and K+ ions in food and biofluid samples, respectively.


Assuntos
Corantes Fluorescentes , Molibdênio , Fluorescência , Íons , Espectrometria de Fluorescência
5.
Analyst ; 148(7): 1442-1450, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36896718

RESUMO

Uric acid (UA) is the primary waste product from purine metabolism in humans. Excessive UA levels in the body will accumulate in joints and form crystals that cause a wide range of health problems. An enzymatic electrochemical biosensor for UA based on the transition metal complex-incorporated polyaniline PANI-RC functionalized with both urate oxidase (UOx) as a specific bioreceptor and horseradish peroxidase (HRP) as a signal enhancer was developed. The transition metal complex being used herein is the commonly used redox couple (RC) in electrochemical biosensors, [Fe(CN)6]3-/4-, which plays the pivotal role of electron acceptors. This PANI-RC platform then becomes a conducive environment not only for enzyme immobilization but also for signal transfer improvement. The synergistic combination of HRP near UOx and RC anchored on the backbone of PANI helps in electron transfer from the enzymatic reaction to the current collector. The resulting PANI-RC-based UA sensor demonstrates high sensitivity with a detection limit of 11.4 µM, wide linear range, good stability, and excellent selectivity even in the presence of the most problematic interference in UA assays (e.g., ascorbic acid and urea). The recovery tests using artificial biofluid-spiked UA samples also showed promising results for practical usage of the PANI-RC-based UA sensor.


Assuntos
Técnicas Biossensoriais , Elementos de Transição , Humanos , Ácido Úrico , Compostos de Anilina/química , Peroxidase do Rábano Silvestre , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Eletrodos
6.
J Fluoresc ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843695

RESUMO

In this paper, a new synthetic route is introduced for the synthesis of high-luminescent greenish-yellow fluorescent copper nanoclusters (PVP@A. senna-Cu NCs) using Avaram senna (A. senna) and polyvinylpyrrolidone (PVP) as templates. A. senna plant extract mainly contains variety of phytochemicals including glycosides, sugars, saponins, phenols, and terpenoids that show good pharmacological activities such as anti-inflammatory, antioxidant, and antidiabetic. PVP is a stable and biocompatible polymer that is used as a stabilizing agent for the synthesis of PVP@A. senna-Cu NCs. The size, surface functionality, and element composition of the fabricated Cu NCs were confirmed by various analytical techniques. The as-prepared greenish-yellow fluorescent Cu NCs exhibit significant selectivity towards fipronil, thereby favoring to assay fipronil pesticide with good linearity in the range of 3.0-30 µM with a detection limit of 65.19 nM. More importantly, PVP@A. senna-Cu NCs are successfully applied to assay fipronil in vegetable and grain samples.

7.
J Fluoresc ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109030

RESUMO

This study describes a new method for synthesizing water-soluble carbon dots (CDs) using "Curcuma longa" (green source) named CL-CDs via a single-step hydrothermal process. The as-synthesized CL-CDs exhibited greenish-yellow fluorescence at 548 nm upon excitation at 440 nm. It shows good water stability and exhibits a quantum yield of 19.4%. The developed probe is utilized for sensing triazophos (TZP) pesticide via a dynamic quenching mechanism, exhibiting favorable linearity ranging from 0.5-500 µM with a limit of detection of 0.0042 µM. The as-prepared CL-CDs probe was sensitive and selective towards TZP. Lastly, the successful application of the CL-CDs-based fluorescent probe in water and rice samples highlights its potential as a reliable and efficient method for the detection of TZP in various real sample matrices. Eventually, bioimaging and biocompatibility aspects of CL-CDs have been assessed on Saccharomyces cerevisiae (yeast) cell and lung cancer (A549) cell lines, respectively.

8.
J Fluoresc ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109031

RESUMO

Fluorescent copper nanoclusters (Cu NCs) were synthesized by using Withania somnifera (W. somnifera) plant extract as a biotemplate. Aqueous dispersion of W. somnifera-Cu NCs displays intense emission peak at 458 nm upon excitation at 350 nm. This fluorescence emission was utilized for the detection of two pyrethroid pesticides (cypermethrin and lambda-cyhalothrin) via "turn-off" mechanism. Upon the addition of two pyrethiod pesticides independently, the fluorescence emission of W. somnifera-Cu NCs was gradually decreased with increasing concentrations of both pesticides. It was noticed that the decrease in emission intensity at 458 nm was linearly dependent on the logarithm of both pesticides concentrations in the ranges of 0.01-100 µM and of 0.05-100 µM for cypermethrin and lambda-cyhalothrin, respectively. Consequently, the limits of detection were found to be 27.06 and 23.28 nM for cypermethrin and lambda-cyhalothrin, respectively. The as-fabricated W. somnifera-Cu NCs acted as a facile sensor for the analyses of cypermethrin and lambda-cyhalothrin in vegetables (tomato and bottle gourd), which demonstrates that it could be used as portable sensing platform for assaying of two pyrethroid pesticides in food samples.

9.
Environ Res ; 232: 116318, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302744

RESUMO

In this work, we have synthesized four different color (yellow, orange, green, and blue (multicolor)) silver nanostructures (AgNSs) by chemical reduction method where silver nitrate, sodium borohydride and hydrogen peroxide were used as reagents. The as-synthesized multicolor AgNSs were successfully functionalized with bovine serum albumin (BSA) and applied as a colorimetric sensor for the assaying of metal cations (Cr3+, Hg2+, and K+). The addition of metal ions (Cr3+, Hg2+, and K+) into BSA functionalized AgNSs (BSA-AgNSs) causes the aggregation of BSA-AgNSs, and are accompanied by visual color changes with red or blue shift in the surface plasmon resonance (SPR) band of BSA-AgNSs. The BSA-AgNSs show different SPR characteristic for each metal ions (Cr3+, Hg2+, and K+) with exhibiting different spectral shift and color change. The yellow color BSA-AgNSs (Y-BSA-AgNSs) act as a probe for sensing Cr3+, orange color BSA-AgNSs (O-BSA-AgNSs) act as probe for Hg2+ ion assay, green color BSA-AgNSs (G-BSA-AgNSs) act as a probe for the assaying of both K+ and Hg2+, and blue color BSA-AgNSs (B-BSA-AgNSs) act as a sensor for colorimetric detection of K+ ion. The detection limits were found to be 0.26 µM for Cr3+ (Y-BSA-AgNSs), 0.14 µM for Hg2+ (O-BSA-AgNSs), 0.05 µM for K+ (G-BSA-AgNSs), 0.17 µM for Hg2+ (G-BSA-AgNSs), and 0.08 µM for K+ (B-BSA-AgNSs), respectively. Furthermore, multicolor BSA-AgNSs were also applied for assaying of Cr3+, and Hg2+ in industrial water samples and K+ in urine sample.


Assuntos
Mercúrio , Nanopartículas Metálicas , Nanoestruturas , Colorimetria/métodos , Água/química , Nanopartículas Metálicas/química , Cátions
10.
J Enzyme Inhib Med Chem ; 38(1): 2202358, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37096560

RESUMO

Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) protein tyrosine kinases co-expressed in various cancers such as ovarian, breast, colon, and prostate subtypes. Herein, new TAK-285 derivatives (9a-h) were synthesised, characterised, and biologically evaluated as dual EGFR/HER2 inhibitors. Compound 9f exhibited IC50 values of 2.3 nM over EGFR and 234 nM over HER2, which is 38-fold of staurosporine and 10-fold of TAK-285 over EGFR. Compound 9f also showed high selectivity profile when tested over a small kinase panel. Compounds 9a-h showed IC50 values in the range of 1.0-7.3 nM and 0.8-2.8 nM against PC3 and 22RV1 prostate carcinoma cell lines, respectively. Cell cycle analysis, apoptotic induction, molecular docking, dynamics, and MM-GBSA studies confirmed the plausible mechanism(s) of compound 9f as a potent EGFR/HER2 dual inhibitor with an effective antiproliferative action against prostate carcinoma.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias da Próstata , Masculino , Humanos , Simulação de Acoplamento Molecular , Próstata , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Receptores ErbB
11.
Luminescence ; 38(7): 1374-1384, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36758217

RESUMO

The fabrication of stable fluorescent MoNCs (molybdenum nanoclusters) in aqueous media is quite challenging as it is not much explored yet. Herein, we report a facile and efficient strategy for fabricating MoNCs using 2,3 dialdehyde maltose-cysteine Schiff base (DAM-cysteine) as a ligand for detecting myoglobin and γ-aminobutyric acid (GABA) in biofluids with high selectivity and sensitivity. The DAM-cysteine-MoNCs displayed fluorescence of bright blue color under a UV light at 365 nm with an emission peak at 444 nm after excitation at 370 nm. The synthesized DAM-cysteine-MoNCs were homogeneously distributed with a mean size of 2.01 ± 0.98 nm as confirmed by the high-resolution transmission electron microscopy (HR-TEM). Further, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) techniques were utilized to confirm the elemental oxidation states and surface functional groups of the DAM-cysteine-MoNCs. After the addition of myoglobin and GABA, the emission peak of DAM-cysteine-MoNCs at 444 nm was significantly quenched. This resulted in the development of a quantitative assay for the detection of myoglobin (0.1-0.5 µM) and GABA (0.125-2.5 µM) with the lower limit of detection as 56.48 and 112.75 nM for myoglobin and GABA, respectively.


Assuntos
Cisteína , Molibdênio , Cisteína/química , Espectroscopia de Infravermelho com Transformada de Fourier , Molibdênio/química , Maltose , Mioglobina , Micro-Ondas , Bases de Schiff , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Ácido gama-Aminobutírico
12.
Luminescence ; 38(11): 1872-1882, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37555766

RESUMO

In this work, a facile one-step green synthesis was developed for the fabrication of blue fluorescent copper nanocluster (Brahmi-CuNCs) from the extract of Bacopa monnieri (common name is Brahmi) via a microwave method. The as-prepared Brahmi-CuNCs emitted blue fluorescence at 452 nm when excited at 352 nm and showed a quantum yield of 31.32%. Brahmi-derived blue fluorescent CuNCs acted as a probe for fluorescence sensing of dichlorvos. Upon the addition of dichlorvos, the blue emission for Brahmi-CuNCs was gradually turned off, favouring establishment of a calibration graph in the range 0.5-100 µM with a detection limit of 0.23 µM. The as-synthesized Brahmi-CuNCs exhibited marked sensitivity and selectivity towards dichlorvos, favourable for assaying dichlorvos in various samples (cabbage, apple juice, and rice).


Assuntos
Bacopa , Nanopartículas Metálicas , Fluorescência , Cobre , Diclorvós , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes , Limite de Detecção
13.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771165

RESUMO

The bitter taste of M. charantia fruit limits its consumption, although the health benefits are well known. The thermal drying process is considered as an alternative method to reduce the bitterness. However, processing studies have rarely investigated physiochemical changes in fruit stages. The antioxidant activities and physiochemical properties of various fruit stages were investigated using different thermal treatments. The color of the thermally treated fruit varied depending on the temperature. When heat-treated for 3 days, the samples from the 30 °C and 90 °C treatments turned brown, while the color of the 60 °C sample did not change significantly. The antioxidant activities were increased in the thermally processed samples in a temperature-dependent manner, with an increase in phenolic compounds. In the 90 °C samples, the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity presented a 6.8-fold higher level than that of nonthermal treatment in mature yellow fruit (S3), whereas the activity showed about a 3.1-fold higher level in immature green (S1) and mature green (S2) fruits. Regardless of the stages, the carotenoid content tended to decrease with increasing temperature. In terms of antioxidant activities, these results suggested that mature yellow fruit is better for consumption using thermal processing.


Assuntos
Antioxidantes , Momordica charantia , Antioxidantes/análise , Carotenoides/análise , Momordica charantia/química , Fenóis/química , Frutas/química
14.
Analyst ; 147(14): 3155-3179, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35730445

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) have gained more attention from researchers due to their unique properties of photon conversion from an excitation/incident wavelength to a more suitable emission wavelength at a designated site, thus improving the scope in the life sciences field. Due to their fascinating and unique optical properties, UCNPs offer attractive opportunities in theranostics for early diagnostics and treatment of deadly diseases such as cancer. Also, several efforts have been made on emerging approaches for the fabrication and surface functionalization of luminescent UCNPs in optical biosensing applications using various infrared excitation wavelengths. In this review, we discussed the recent advancements of UCNP-based analytical chemistry approaches for sensing and theranostics using a 980 nm laser as the excitation source. The key analytical merits of UNCP-integrated fluorescence analytical approaches for assaying a wide variety of target analytes are discussed. We have described the mechanisms of the upconversion (UC) process, and the application of surface-modified UCNPs for in vitro/in vivo bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Based on the latest scientific achievements, the advantages and disadvantages of UCNPs in biomedical and optical applications are also discussed to overcome the shortcomings and to improve the future study directions. This review delivers beneficial practical information of UCNPs in the past few years, and insights into their research in various fields are also discussed precisely.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Luminescência , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia
15.
Biotechnol Bioprocess Eng ; 27(4): 607-614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755619

RESUMO

Bovine diarrhea is a major concern in the global bovine industry because it can cause significant financial damage. Of the many potential infectious agents that can lead to bovine diarrhea, bovine rotavirus (BRV) is a particular problem due to its high transmissibility and infectivity. Therefore, it is important to prevent the proliferation of BRV using an early detection system. This study developed an affinity peptide-based electrochemical method for use as a rapid detection system for BRV. A BRV-specific peptide was identified via the phage display technique and chemically synthesized. The synthetic peptide was immobilized on a gold electrode through thiol-gold interactions. The performance of the BRV specific binding peptides was evaluated using square wave voltammetry. The developed detection system exhibited a low detection limit (5 copies/mL) and limit of quantitation (2.14 × 102 copies/mL), indicating that it is a promising sensor platform for the monitoring of BRV.

16.
Analyst ; 146(5): 1489-1513, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33543178

RESUMO

Currently, the 2019 novel coronavirus (2019-nCoV) is drastically affecting 214 countries, causing severe pneumonia in patients, which has resulted in lockdown being implemented in several countries to stop its local transmission. Considering this, the rapid screening and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; 2019-nCoV) play an essential role in the diagnosis of COVID-19, which can minimize local transmission and prevent an epidemic. Due to this public health emergency, the development of ultra-fast reliable diagnostic kits is essential for the diagnosis of COVID-19. Recently, molecular biology and nanotechnology based analytical methods have proven to be promising diagnostic tools for the rapid screening of 2019-nCoV with high accuracy and precision. The main aim of this review is to provide a retrospective overview on the molecular biology tools (reverse transcription polymerase chain reaction (RT-PCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP)) and nanotechnology based analytical tools (enzyme-linked immunosorbent assay (ELISA), RT-PCR, and lateral flow assay) for the rapid diagnosis of COVID-19. This review also presents recent reports on other analytical techniques including paper spray mass spectrometry for the diagnosis of COVID-19 in clinical samples. Finally, we provide a quick reference on molecular biology and nanotechnology based analytical tools for COVID-19 diagnosis in clinical samples.


Assuntos
COVID-19/diagnóstico , Nanotecnologia , SARS-CoV-2/metabolismo , Anticorpos Antivirais/sangue , COVID-19/virologia , Humanos , Imunoensaio , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/imunologia
17.
Proc Natl Acad Sci U S A ; 115(23): 5944-5949, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784775

RESUMO

Nanomaterials (NMs) are mostly synthesized by chemical and physical methods, but biological synthesis is also receiving great attention. However, the mechanisms for biological producibility of NMs, crystalline versus amorphous, are not yet understood. Here we report biosynthesis of 60 different NMs by employing a recombinant Escherichia coli strain coexpressing metallothionein, a metal-binding protein, and phytochelatin synthase that synthesizes a metal-binding peptide phytochelatin. Both an in vivo method employing live cells and an in vitro method employing the cell extract are used to synthesize NMs. The periodic table is scanned to select 35 suitable elements, followed by biosynthesis of their NMs. Nine crystalline single-elements of Mn3O4, Fe3O4, Cu2O, Mo, Ag, In(OH)3, SnO2, Te, and Au are synthesized, while the other 16 elements result in biosynthesis of amorphous NMs or no NM synthesis. Producibility and crystallinity of the NMs are analyzed using a Pourbaix diagram that predicts the stable chemical species of each element for NM biosynthesis by varying reduction potential and pH. Based on the analyses, the initial pH of reactions is changed from 6.5 to 7.5, resulting in biosynthesis of various crystalline NMs of those previously amorphous or not-synthesized ones. This strategy is extended to biosynthesize multi-element NMs including CoFe2O4, NiFe2O4, ZnMn2O4, ZnFe2O4, Ag2S, Ag2TeO3, Ag2WO4, Hg3TeO6, PbMoO4, PbWO4, and Pb5(VO4)3OH NMs. The strategy described here allows biosynthesis of NMs with various properties, providing a platform for manufacturing various NMs in an environmentally friendly manner.


Assuntos
Escherichia coli/metabolismo , Metais Pesados/metabolismo , Nanoestruturas , Nanotecnologia/métodos , Reatores Biológicos/microbiologia , Óxidos/metabolismo
18.
Bioprocess Biosyst Eng ; 44(4): 913-925, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33502625

RESUMO

The sweet-tasting protein brazzein offers considerable potential as a functional sweetener with antioxidant, anti-inflammatory, and anti-allergic properties. Here, we optimized a chemically defined medium to produce secretory recombinant brazzein in Kluyveromyces lactis, with applications in mass production. Compositions of defined media were investigated for two phases of fermentation: the first phase for cell growth, and the second for maximum brazzein secretory production. Secretory brazzein expressed in the optimized defined medium exhibited higher purity than in the complex medium; purification was by ultrafiltration using a molecular weight cutoff, yielding approximately 107 mg L-1. Moreover, the total media cost in this defined medium system was approximately 11% of that in the optimized complex medium to generate equal amounts of brazzein. Therefore, the K. lactis expression system is useful for mass-producing recombinant brazzein with high purity and yield at low production cost and indicates a promising potential for applications in the food industry.


Assuntos
Kluyveromyces/metabolismo , Proteínas de Plantas/química , Anti-Inflamatórios/química , Antioxidantes/química , Biotecnologia/métodos , Meios de Cultura , Densitometria , Fermentação , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Peso Molecular , Permeabilidade , Proteínas Recombinantes/química , Edulcorantes/química , Temperatura
19.
Analyst ; 145(21): 7072, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-32901639

RESUMO

Correction for 'Progress of electrospray ionization and rapid evaporative ionization mass spectrometric techniques for the broad-range identification of microorganisms' by Suresh Kumar Kailasa et al., Analyst, 2019, 144, 1073-1103, DOI: 10.1039/C8AN02034E.

20.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143335

RESUMO

The food industry requires rapid and simple detection methods for preventing harm from pathogenic bacteria. Until now, various technologies used to detect foodborne bacteria were time-consuming and laborious. Therefore, we have developed an automated immunomagnetic separation combined with a colorimetric assay for the rapid detection of E. coli O157:H7 in food samples. The colorimetric detection method using enzymatic reaction is fascinating because of its simplicity and rapidity and does not need sophisticated devices. Moreover, the proposed procedures for the detection of bacteria in food take less than 3 h including pre-enrichment, separation and detection steps. First, target-specific immunomagnetic beads were introduced to contaminated milk in a pre-enrichment step. Second, the pre-enriched sample solution containing target bacteria bound on immunomagnetic beads was injected into an automated pretreatment system. Subsequently, the immunomagnetic beads along with target bacteria were separated and concentrated into a recovery tube. Finally, released ß-galactosidase from E. coli O157:H7 after lysis was reacted with chlorophenol red ß-galactopyranoside (CPRG) used as a substrate and the colorimetric change of CPRG was determined by absorbance measuring or the naked eye. By the proposed approach in this study, we could detect 3 × 102 CFU/mL of E. coli O157:H7 from a milk sample within 3 h.


Assuntos
Colorimetria/métodos , Ensaios Enzimáticos , Escherichia coli O157/isolamento & purificação , Separação Imunomagnética/métodos , beta-Galactosidase/metabolismo , Animais , Automação , Escherichia coli O157/ultraestrutura , Leite/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA