Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2201879119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858318

RESUMO

The photo-driven process of singlet fission generates coupled triplet pairs (TT) with fundamentally intriguing and potentially useful properties. The quintet 5TT0 sublevel is particularly interesting for quantum information because it is highly entangled, is addressable with microwave pulses, and could be detected using optical techniques. Previous theoretical work on a model Hamiltonian and nonadiabatic transition theory, called the JDE model, has determined that this sublevel can be selectively populated if certain conditions are met. Among the most challenging, the molecules within the dimer undergoing singlet fission must have their principal magnetic axes parallel to one another and to an applied Zeeman field. Here, we present time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy of a single crystal sample of a tetracenethiophene compound featuring arrays of dimers aligned in this manner, which were mounted so that the orientation of the field relative to the molecular axes could be controlled. The observed spin sublevel populations in the paired TT and unpaired (T+T) triplets are consistent with predictions from the JDE model, including preferential 5TT0 formation at z ‖ B0, with one caveat-two 5TT spin sublevels have little to no population. This may be due to crossings between the 5TT and 3TT manifolds in the field range investigated by TR-EPR, consistent with the intertriplet exchange energy determined by monitoring photoluminescence at varying magnetic fields.

2.
J Phys Chem A ; 128(20): 3982-3992, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38717589

RESUMO

Tetraceno[2,3-b]thiophene is regarded as a strong candidate for singlet fission-based solar cell applications due to its mixed characteristics of tetracene and pentacene that balance exothermicity and triplet energy. An electronically weakly coupled tetraceno[2,3-b]thiophene dimer (Et2Si(TIPSTT)2) with a single silicon atom bridge has been synthesized, providing a new platform to investigate the singlet fission mechanism involving the two acene chromophores. We study the excited state dynamics of Et2Si(TIPSTT)2 by monitoring the evolution of multiexciton coupled triplet states, 1TT to 5TT to 3TT to T1 + S0, upon photoexcitation with transient absorption, temperature-dependent transient absorption, and transient/pulsed electron paramagnetic resonance spectroscopies. We find that the photoexcited singlet lifetime is 107 ps, with 90% evolving to form the TT state, and the complicated evolution between the multiexciton states is unraveled, which can be an important reference for future efforts toward tetraceno[2,3-b]thiophene-based singlet fission solar cells.

3.
BMC Microbiol ; 23(1): 69, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922786

RESUMO

BACKGROUND: Bioprospecting of actinobacteria isolated from Kubuqi desert, China for antibacterial, antifungal and cytotoxic metabolites production and their structure elucidation. RESULTS: A total of 100 actinobacteria strains were selectively isolated from Kubuqi desert, Inner Mongolia, China. The taxonomic characterization revealed Streptomyces as the predominant genus comprising 37 different species, along with the rare actinobacterial genus Lentzea. The methanolic extracts of 60.8% of strains exhibited potent antimicrobial activities against Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, Salmonella enterica, Saccharomyces cerevisiae and high to mild in vitro cytotoxicity against PC3 (prostate cancer) and A549 (lung carcinoma) cell lines. The metabolomics analysis by TLC, HPLC-UV/vis, HPLC-MS and NMR showed the presence of compounds with molecular weights ranging from 100 to 1000 Da. The scale-up fermentation of the prioritized anti-Gram-negative strain PU-KB10-4 (Streptomyces griseoviridis), yielded three pure compounds including; griseoviridin (1; 42.0 mgL- 1) with 20 fold increased production as compared to previous reports and its crystal structure as monohydrate form is herein reported for the first time, mitomycin C (2; 0.3 mgL- 1) and a new bacterial metabolite 4-hydroxycinnamide (3; 0.59 mgL- 1). CONCLUSIONS: This is the first report of the bioprospecting and exploration of actinobacteria from Kubuqi desert and the metabolite 4-hydroxycinnamide (3) is first time isolated from a bacterial source. This study demonstrated that actinobacteria from Kubuqi desert are a potential source of novel bioactive natural products. Underexplored harsh environments like the Kubuqi desert may harbor a wider diversity of actinobacteria, particularly Streptomyces, which produce unique metabolites and are an intriguing source to develop medicinally valuable natural products.


Assuntos
Actinobacteria , Produtos Biológicos , Streptomyces , Mitomicina/metabolismo , Bioprospecção , Filogenia , Antibacterianos/química , Produtos Biológicos/farmacologia
4.
J Org Chem ; 88(17): 12251-12256, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607040

RESUMO

A rigid tetracene dimer with a substantial interchromophore distance has been prepared through an application of the recently developed catalytic arene-norbornene annulation (CANAL) reaction. An iterative cycloaddition route was found to be unsuccessful, so a shorter route was adopted whereby fragments were coupled in the penultimate step to form a 13:1 mixture of two diastereomers, the major of which was isolated and crystallized. Constituent tetracene moieties are linked with a rigid, well-defined bridge and feature a near-co-planar mutual orientation of the acenes.

5.
Inorg Chem ; 62(32): 13118-13129, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37530672

RESUMO

Diamine ligands are effective structural scaffolds for tuning the reactivity of transition-metal complexes for catalytic, materials, and phosphorescent applications and have been leveraged for biological use. In this work, we report the synthesis and characterization of a novel class of cyclometalated [C^N] Au(III) complexes bearing secondary diamines including a norbornane backbone, (2R,3S)-N2,N3-dibenzylbicyclo[2.2.1]heptane-2,3-diamine, or a cyclohexane backbone, (1R,2R)-N1,N2-dibenzylcyclohexane-1,2-diamine. X-ray crystallography confirms the square-planar geometry and chirality at nitrogen. The electronic character of the conformationally restricted norbornane backbone influences the electrochemical behavior with redox potentials of -0.8 to -1.1 V, atypical for Au(III) complexes. These compounds demonstrate promising anticancer activity, particularly, complex 1, which bears a benzylpyridine organogold framework, and supported by the bicyclic conformationally restricted diaminonorbornane, shows good potency in A2780 cells. We further show that a cellular response to 1 evokes reactive oxygen species (ROS) production and does not induce mitochondrial dysfunction. This class of complexes provides significant stability and reactivity for different applications in protein modification, catalysis, and therapeutics.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Ouro/farmacologia , Ouro/química , Antineoplásicos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Diaminas/química , Norbornanos , Ligantes
6.
Inorg Chem ; 62(28): 10940-10954, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37405779

RESUMO

While cancer cells rely heavily upon glycolysis to meet their energetic needs, reducing the importance of mitochondrial oxidative respiration processes, more recent studies have shown that their mitochondria still play an active role in the bioenergetics of metastases. This feature, in combination with the regulatory role of mitochondria in cell death, has made this organelle an attractive anticancer target. Here, we report the synthesis and biological characterization of triarylphosphine-containing bipyridyl ruthenium (Ru(II)) compounds and found distinct differences as a function of the substituents on the bipyridine and phosphine ligands. 4,4'-Dimethylbipyridyl-substituted compound 3 exhibited especially high depolarizing capabilities, and this depolarization was selective for the mitochondrial membrane and occurred within minutes of treatment in cancer cells. The Ru(II) complex 3 exhibited an 8-fold increase in depolarized mitochondrial membranes, as determined by flow cytometry, which compares favorably to the 2-fold increase observed by carbonyl cyanide chlorophenylhydrazone (CCCP), a proton ionophore that shuttles protons across membranes, depositing them into the mitochondrial matrix. Fluorination of the triphenylphosphine ligand provided a scaffold that maintained potency against a range of cancer cells but avoided inducing toxicity in zebrafish embryos at higher concentrations, displaying the potential of these Ru(II) compounds for anticancer applications. This study provides essential information regarding the role of ancillary ligands for the anticancer activity of Ru(II) coordination compounds that induce mitochondrial dysfunction.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Animais , 2,2'-Dipiridil , Ligantes , Peixe-Zebra , Mitocôndrias , Rutênio/farmacologia , Rutênio/metabolismo
7.
Inorg Chem ; 61(44): 17746-17758, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36282246

RESUMO

To provide new insights for understanding the influence of B site cations on the structure in chlorometallate materials of the form ABn+Cln+2, we report novel organic-inorganic hybrid metallates (OIHMs) incorporating histammonium (HistNH3) dications and various transition-metal and main group B site cations. Single crystals of OIHMs with the basic formula (HistNH3Mn+Cln+2, M = Fe, Co, Ni, Cu, Zn, Cd, Hg, Sb, Sn, Pb, Bi) were grown and their structures characterized by single-crystal X-ray crystallography. HistNH3CoCl4, HistNH3ZnCl4, and HistNH3SbCl5 were crystallized in a non-centrosymmetric space group and were subsequently studied with piezoresponse force microscopy (PFM). While bulk measurements of crystals and poly(vinylidene difluoride) (PVDF)/metallate composite films exhibited low bulk response values, the surface-measured local response values using PFM were 5.17 pm/V for HistNH3CoCl4, 22.6 pm/V for HistNH3ZnCl4, and 2.9 pm/V for HistNH3SbCl5 compared with 2.50 pm/V for PVDF reference samples. The magnitudes of the d33 coefficient, net dipole, and cation-Cl bond dipole obtained from the density functional theory calculations confirm the higher response in HistNH3ZnCl4 compared to HistNH3CoCl4. Density of states and crystal orbital Hamilton population analysis indicate that the higher net dipole in HistNH3ZnCl4 compared to HistNH3CoCl4 is due to the lower hybridization of the M-Cl bond.

8.
Inorg Chem ; 60(19): 14582-14593, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34402302

RESUMO

Transition-metal-based approaches to selectively modify proteins hold promise in addressing challenges in chemical biology. Unique bioorthogonal chemistry can be achieved with preformed metal-based compounds; however, their utility in native protein sites within cells remain underdeveloped. Here, we tune the ancillary ligands of cyclometalated gold(III) as a reactive group, and the gold scaffold allows for rapid modification of a desired cysteine residue proximal to the ligand binding site of a target protein. Moreover, evidence for a ligand association mechanism toward C-S bond formation by X-crystallography is established. The observed reactivity of cyclometalated gold(III) enables the rational design of a cysteine-targeted covalent inhibitor of mutant KRAS. This work illustrates the potential of structure-activity relationship studies to tune kinetics of cysteine arylation and rational design of metal-mediated ligand affinity chemistry (MLAC) of native proteins.


Assuntos
Cisteína/farmacologia , Inibidores Enzimáticos/farmacologia , Ouro/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Cisteína/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ouro/química , Humanos , Ligantes , Estrutura Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
9.
Inorg Chem ; 60(7): 4456-4462, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730850

RESUMO

Three salen aluminum bromide compounds salen(tBu)AlBr (1) (salen = N,N'-ethylenebis(3,5-di-tert-butylsalicylideneimine)), salpen(tBu)AlBr (2) (salpen = N,N'-propylenebis(3,5-di-tert-butylsalicylideneimine)), and salophen(tBu)AlBr (3) (salophen = N,N'-o-phenylenenebis(3,5-di-tert-butylsalicylideneimine) were evaluated for their potential use as dealkylation agents with a series of organophosphates. These reactions led to the aluminum phosphate compounds containing six-coordinate aluminum centers and hydrolytically stable P-O-C bonds: 4 = [salen(tBu)AlOP(O)(OMe)2]n, 5 = [salen(tBu)AlOP(O)(OEt)2]n, 6 = [salen(tBu)AlOP(O)(OPh)2]n, 7 = [salophen(tBu)AlOP(O)(OMe)2]n, 8 = [salpen(tBu)AlOP(O)(OiPr)2]2, 9 = (salen(tBu)AlO)3PO, 10 = (salpen(tBu)AlO)3PO, 11 = (salophen(tBu)AlO)3PO. All the compounds were characterized by 1H, 13C, 27Al, and 31P NMR, IR, and mass spectrometry. Furthermore, compounds 4-8 were structurally characterized by single-crystal X-ray diffraction. The potential hydrolysis of these compounds was modeled with 4 and demonstrated the unique stability of the final product and ease of isolation.

10.
Eur J Inorg Chem ; 2021(35): 3611-3621, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34539235

RESUMO

The ß-diketone scaffold is a commonly used synthetic intermediate, and is a functional group found in natural products such as curcuminoids. This core structure can also act as a chelating ligand for a variety of metals. In order to assess the potential of this scaffold for medicinal inorganic chemistry, seven different κ2-O,O'-chelating ligands were used to construct Ru(II) complexes with polypyridyl co-ligands, and their biological activity was evaluated. The complexes demonstrated promising structure-dependent cytotoxicity. Three complexes maintained high activity in a tumor spheroid model, and all complexes demonstrated low in vivo toxicity in a zebrafish model. From this series, the best compound exhibited a ~ 30-fold window between cytotoxicity in a 3-D tumor spheroid model and potential in vivo toxicity. These results suggest that κ2-O,O'-ligands can be incorporated into Ru(II)-polypyridyl complexes to create favorable candidates for future drug development.

11.
J Am Chem Soc ; 142(5): 2460-2470, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31896253

RESUMO

Fullerene fragments, referred to as buckybowls, are garnering interest due to their distinctive molecular shapes and optoelectronic properties. Here, we report the synthesis and characterization of a novel C70 subunit, diindeno[4,3,2,1-fghi:4',3',2',1'-opqr]perylene, that is substituted with either triethylsilyl(TES)-ethynyl or 2,4,6-triisopropylphenyl groups at the meta-positions. The resulting compounds (1 and 2) display a bowl-to-bowl inversion at room temperature. Notably, the substituent groups on the meta-positions alter both the geometric and the electronic properties as well as the crystal packing of the buckybowls. In contrast to the 2,4,6-triisopropylphenyl groups in 2, the TES-ethynyl groups in 1 lead to enhanced bond length alternation, resulting in weaker aromaticity of the six-membered rings of the buckybowl skeleton. 1 forms one-dimensional (1D) concave-in-convex stacking columns, and when 1 is blended with C70, the buckybowls encapsulate C70 and result in two-dimensional cocrystals. Organic field-effect transistor (OFET) measurements demonstrate that 1 displays a hole mobility of 0.31 cm2 V-1 s-1, and the 1-C70 cocrystal exhibits ambipolar transport characteristics with electron and hole mobilities approaching 0.40 and 0.07 cm2 V-1 s-1, respectively. This work demonstrates the potential of buckybowls for the development of organic semiconductors.

12.
Inorg Chem ; 59(16): 11266-11272, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32615039

RESUMO

The conversion of protons to H2 is a critical reaction for the design of renewable fuel generating systems. Robust, earth-abundant, metal-based catalysts that can rapidly facilitate this reduction reaction are highly desirable. Mn(bpy)(CO)3Br generates an active catalyst for the proton reduction reaction upon photolysis at a high, directly observed H2 production rate of 1 300 000 turnovers per hour, with a low driving force for this reaction. Through the use of FcMe10 as an electron source, a proton source (triflic acid, 4-cyanoanilinium, or tosylic acid), and MeCN/H2O as solvent, the thermal reaction at room temperature was found to proceed until complete consumption of the electron source. No apparent loss in catalytic activity was observed to the probed limit of 10 000 000 turnovers of H2. Interestingly, a catalytically competent complex (Mn(bpy)2Br2), which could be isolated and characterized, formed upon photolysis of Mn(bpy)(CO)3Br in the presence of acid.

13.
Inorg Chem ; 59(2): 1006-1013, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31899619

RESUMO

Ru(II) complex photocages are used in a variety of biological applications, but the thermal stability, photosubstitution quantum yield, and biological compatibility of the most commonly used Ru(II) systems remain unoptimized. Here, multiple compounds used in photocaging applications were analyzed and found to have several unsatisfactory characteristics. To address these deficiencies, three new scaffolds were designed to improve key properties through modulation of a combination of electronic, steric, and physiochemical features. One of these new systems, containing the 2,2'-biquinoline-4,4'-dicarboxylic acid (2,2'-bicinchoninic acid) ligand, fulfills several of the requirements for an optimal photocage. Another complex, containing the 2-benzothiazol-2-yl-quinoline ligand, provides a scaffold for the creation of "dual action" agents.

14.
Inorg Chem ; 59(13): 8882-8892, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32530274

RESUMO

Ruthenium(II) complexes developed for photodynamic therapy (PDT) are almost exclusively tris-bidentate systems with C2 or D3 symmetry. This is due to the fact that this structural framework commonly produces long-lived excited states, which, in turn, allow for the generation of large amounts of singlet oxygen (1O2) and other reactive oxygen species. Complexes containing tridentate ligands would be advantageous for biological applications as they are generally achiral (D2d or C2v symmetry), which eliminates the possibility of multiple isomers which could exhibit potentially different interactions with chiral biological entities. However, Ru(II) complexes containing tridentate ligands are rarely studied as candidates for photobiological applications, such as PDT, since they almost exclusively exhibit low quantum yields and very short excited-state lifetimes and, thus, are not capable of generating sufficient 1O2 or engaging in electron transfer reactions. Here, we report a proof-of-concept approach to make bis-tridentate Ru(II) complexes useful for PDT applications by altering their photophysical properties through the inclusion of N-heterocyclic carbene (NHC) ligands. Three NHC and two terpyridine ligands were studied to evaluate the effects of structural and photophysical modulations of bis-substituted Ru(II) complexes. The NHC complexes were found to have superior excited-state lifetimes, 1O2 production, and photocytotoxicity. To the best of our knowledge, these complexes are the most potent light-activated bis-tridentate complexes reported.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , DNA/metabolismo , Quebras de DNA de Cadeia Simples/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Luz , Estudo de Prova de Conceito , Rutênio/química , Oxigênio Singlete/metabolismo
15.
Inorganica Chim Acta ; 503(1)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34565828

RESUMO

Cancer remains one of the leading causes of death worldwide and despite several attempts using chemotherapy to combat the deadly disease, toxic side effects and drug resistance temper efficacy [1]. Thus, drugs with potentially new mechanisms and lower toxicity to normal cells are needed. Metalloids such as arsenic compounds have been clinically beneficial in fighting cancer, but germanium is yet to gain such prominence [2,3]. We report the synthesis of four octahedral germanium(IV) complexes bearing acetylacetonato ligand, [GeIV(acac)3)]+, with different anions (3 - 6) using a streamlined synthetic approach. The compounds were structurally and electrochemically characterized using NMR, MS, X-ray crystallography, and cyclic voltammetry. The cyclic voltammogram of 3-5 revealed distinct irreversible peaks in the range of -0.9 to -1.9 V, corresponding to Ge(IV)/ Ge(II) or Ge(II)/Ge(0) couple in DMSO. We explored the anticancer activity of the complexes against a panel of cancer cell lines with IC50 values in the sub-micromolar range (9-15 µM). The compounds display ~3-fold selectivity in cancer cells over normal epithelial cells. In addition to the promising anticancer activity, the compounds display high complex stability in biological media, induces G1 arrest, reactive oxygen stress (ROS) accumulation, and mitochondria membrane depolarization in cancer cells. Furthermore, the compounds induce significant apoptosis.

16.
Molecules ; 25(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291802

RESUMO

Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(-)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X/métodos , Glutationa/química , Humanos , Ligantes , Estereoisomerismo
17.
J Org Chem ; 84(2): 687-697, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30540461

RESUMO

Molecular engineering strategies designed to red-shift cyanine dye absorptions and emissions further into the near-infrared (NIR) spectral region are explored. Through the use of a novel donor group, indolizine, with varying cyanine bridge lengths, dye absorptions and emissions, were shifted deeper into the NIR region than common indoline-cyanines. Stokes shifts resulting from intramolecular steric interactions of up to ∼60 nm in many cases were observed and explained computationally. Molecular brightnesses of up to 5800 deep into the NIR region were observed. Structure-property relationships are explored for the six indolizine-cyanine dyes with varying cyanine bridge length and indolizine substituents showing broad absorption and emission tunability. The dyes are characterized by crystallography, and the photophysical properties are probed by varying solvent for absorption and emission studies. Computational data show involvement of the entire indolizine π-system during light absorption, which suggests these systems can be tunable even further into the NIR region through select derivatizations.

18.
Inorg Chem ; 58(14): 9326-9340, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247820

RESUMO

The synthesis of a novel class of cyclometalated gold(III) complexes supported by benzoylpyridine, benzylpyridine, and (1R,2R)-(+)-1,2-diaminocyclohexane (DACH) ligands, along with their crystal structures, is reported. These compounds provide a new scaffold to investigate biological properties of gold(III) complexes. The six complexes were prepared and characterized, following reactions of (C,N) cyclometalated gold(III) scaffolds, [Au(C^N)Cl2] with DACH, which yielded a new series of cyclometaled gold(III), 3-5, of the type [Au(C^NH)(DACH)2]+ and the nitrogen-substituted cyclometalated Au(III), 6-8, of the type [Au(C^N)(DACH)]2+. Antiproliferative activity of these complexes in a panel of cancer cells showed promising results with IC50 in the micromolar range and selectivity over normal epithelial cells, MRC5. Whereas 8 shows minimal interaction with superhelical DNA except at high gold concentrations of 500 µM, complex 5 does not show interaction even at 1000 µM. The complexes display significant uptake in OVCAR8 cancer cells within 200-1200 pmol/million cells with the exception of complex 4. Differential cellular uptake was observed for the complexes; for example, while 3 and 8 display significant uptake, 4 showed minimal uptake. The compounds proved to be stable under physiological conditions and were minimally affected by either glutathione or sodium ascorbate. Cell cycle studies reveal a G1 arrest induced by representative complexes. The results reveal that enhanced Au(III) stabilization promoted by combined cyclometalated and DACH ligands may offer ligand tuning insights for novel anticancer drug design.


Assuntos
Cicloexilaminas/química , Cicloexilaminas/farmacologia , Compostos de Ouro/química , Compostos de Ouro/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Ascórbico/química , Linhagem Celular Tumoral , Simulação por Computador , Cristalografia por Raios X , Glutationa/química , Humanos , Ligantes , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
19.
J Phys Chem A ; 123(35): 7558-7566, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31449416

RESUMO

A series of rubrene derivatives were synthesized and the influence of the side group in enhancing photo-oxidative stability was evaluated. Photo-oxidation half-lives were determined via UV-vis absorption spectroscopy, which revealed thiophene containing derivatives to be the most stable species. The electron affinity of the compounds did not correlate with stability as previously reported in literature. Our work shows that shorter excited-state lifetimes result in increased photo-oxidative stability in these rubrene derivatives. These results confirm that faster relaxation kinetics out-compete the formation of reactive oxygen species that ultimately degrade linear oligoacenes. This report highlights the importance of using molecular design to tune excited-state lifetimes in order to generate more stable oligoacenes.

20.
Chemphyschem ; 18(16): 2142-2146, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28590586

RESUMO

The substitution of sterically bulky groups at precise locations along the periphery of fused-ring aromatic systems is demonstrated to increase electrochemical oxidation potentials by preventing relaxation events in the oxidized state. Phenothiazines, which undergo significant geometric relaxation upon oxidation, are used as fused-ring models to showcase that electron-donating methyl groups, which would generally be expected to lower oxidation potential, can lead to increased oxidation potentials when used as the steric drivers. Reduction events remain inaccessible through this molecular design route, a critical characteristic for electrochemical systems where high oxidation potentials are required and in which reductive decomposition must be prevented, as in high-voltage lithium-ion batteries. This study reveals a new avenue to alter the redox characteristics of fused-ring systems that find wide use as electroactive elements across a number of developing technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA