Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 586(7830): 543-548, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087910

RESUMO

Joining dissimilar materials such as plastics and metals in engineered structures remains a challenge1. Mechanical fastening, conventional welding and adhesive bonding are examples of techniques currently used for this purpose, but each of these methods presents its own set of problems2 such as formation of stress concentrators or degradation under environmental exposure, reducing strength and causing premature failure. In the biological tissues of numerous animal and plant species, efficient strategies have evolved to synthesize, construct and integrate composites that have exceptional mechanical properties3. One impressive example is found in the exoskeletal forewings (elytra) of the diabolical ironclad beetle, Phloeodes diabolicus. Lacking the ability to fly away from predators, this desert insect has extremely impact-resistant and crush-resistant elytra, produced by complex and graded interfaces. Here, using advanced microscopy, spectroscopy and in situ mechanical testing, we identify multiscale architectural designs within the exoskeleton of this beetle, and examine the resulting mechanical response and toughening mechanisms. We highlight a series of interdigitated sutures, the ellipsoidal geometry and laminated microstructure of which provide mechanical interlocking and toughening at critical strains, while avoiding catastrophic failure. These observations could be applied in developing tough, impact- and crush-resistant materials for joining dissimilar materials. We demonstrate this by creating interlocking sutures from biomimetic composites that show a considerable increase in toughness compared with a frequently used engineering joint.


Assuntos
Fenômenos Biomecânicos/fisiologia , Besouros/anatomia & histologia , Besouros/fisiologia , Força Compressiva , Animais , Biomimética , Feminino , Masculino , Estresse Mecânico
2.
Chem Rev ; 123(16): 9880-9914, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37579025

RESUMO

X-ray computed tomography (CT) is a nondestructive three-dimensional (3D) imaging technique used for studying morphological properties of porous and nonporous materials. In the field of electrocatalysis, X-ray CT is mainly used to quantify the morphology of electrodes and extract information such as porosity, tortuosity, pore-size distribution, and other relevant properties. For electrochemical systems such as fuel cells, electrolyzers, and redox flow batteries, X-ray CT gives the ability to study evolution of critical features of interest in ex situ, in situ, and operando environments. These include catalyst degradation, interface evolution under real conditions, formation of new phases (water and oxygen), and dynamics of transport processes. These studies enable more efficient device and electrode designs that will ultimately contribute to widespread decarbonization efforts.

3.
J Synchrotron Radiat ; 31(Pt 1): 85-94, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947305

RESUMO

X-ray-based computed tomography is a well established technique for determining the three-dimensional structure of an object from its two-dimensional projections. In the past few decades, there have been significant advancements in the brightness and detector technology of tomography instruments at synchrotron sources. These advancements have led to the emergence of new observations and discoveries, with improved capabilities such as faster frame rates, larger fields of view, higher resolution and higher dimensionality. These advancements have enabled the material science community to expand the scope of tomographic measurements towards increasingly in situ and in operando measurements. In these new experiments, samples can be rapidly evolving, have complex geometries and restrictions on the field of view, limiting the number of projections that can be collected. In such cases, standard filtered back-projection often results in poor quality reconstructions. Iterative reconstruction algorithms, such as model-based iterative reconstructions (MBIR), have demonstrated considerable success in producing high-quality reconstructions under such restrictions, but typically require high-performance computing resources with hundreds of compute nodes to solve the problem in a reasonable time. Here, tomoCAM, is introduced, a new GPU-accelerated implementation of model-based iterative reconstruction that leverages non-uniform fast Fourier transforms to efficiently compute Radon and back-projection operators and asynchronous memory transfers to maximize the throughput to the GPU memory. The resulting code is significantly faster than traditional MBIR codes and delivers the reconstructive improvement offered by MBIR with affordable computing time and resources. tomoCAM has a Python front-end, allowing access from Jupyter-based frameworks, providing straightforward integration into existing workflows at synchrotron facilities.

5.
Nano Lett ; 19(7): 4731-4737, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246032

RESUMO

Rational design of sulfur electrodes is exceptionally important in enabling a high-performance lithium/sulfur cell. Constructing a continuous pore structure of the sulfur electrode that enables facile lithium ion transport into the electrode and mitigates the reconstruction of sulfur is a key factor for enhancing the electrochemical performance. Here, we report a three-dimensionally (3D) aligned sulfur electrode cast onto conventional aluminum foil by directional freeze tape casting. The 3D aligned sulfur-graphene oxide (S-GO) electrode consisting of few micron thick S-GO layers with 10-20 µm interlayer spacings demonstrates significant improvement in the performance of the Li/S cell. Moreover, the freeze tape cast graphene oxide electrode exhibits homogeneous reconfiguration behavior in the polysulfide catholyte cell tests and demonstrated extended cycling capability with only 4% decay of the specific capacity over 200 cycles. This work emphasizes the critical importance of proper structural design for sulfur-carbonaceous composite electrodes.

6.
Angew Chem Int Ed Engl ; 58(34): 11652-11656, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31226237

RESUMO

Oil paints comprise pigments, drying oils, and additives that together confer desirable properties, but can react to form metal carboxylates (soaps) that may damage artworks over time. To obtain information on soap formation and aggregation, we introduce a new tapping-mode measurement paradigm for the photothermal induced resonance (PTIR) technique that enables nanoscale IR spectroscopy and imaging on highly heterogenous and rough paint thin sections. PTIR is used in combination with µ-computed tomography and IR microscopy to determine the distribution of metal carboxylates in a 23-year old oil paint of known formulation. Results show that heterogeneous agglomerates of Al-stearate and a Zn-carboxylate complex with Zn-stearate nano-aggregates in proximity are distributed randomly in the paint. The gradients of zinc carboxylates are unrelated to the Al-stearate distribution. These measurements open a new chemically sensitive nanoscale observation window on the distribution of metal soaps that can bring insights for understanding soap formation in oil paint.

7.
J Synchrotron Radiat ; 25(Pt 4): 1261-1270, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979189

RESUMO

Xi-cam is an extensible platform for data management, analysis and visualization. Xi-cam aims to provide a flexible and extensible approach to synchrotron data treatment as a solution to rising demands for high-volume/high-throughput processing pipelines. The core of Xi-cam is an extensible plugin-based graphical user interface platform which provides users with an interactive interface to processing algorithms. Plugins are available for SAXS/WAXS/GISAXS/GIWAXS, tomography and NEXAFS data. With Xi-cam's `advanced' mode, data processing steps are designed as a graph-based workflow, which can be executed live, locally or remotely. Remote execution utilizes high-performance computing or de-localized resources, allowing for the effective reduction of high-throughput data. Xi-cam's plugin-based architecture targets cross-facility and cross-technique collaborative development, in support of multi-modal analysis. Xi-cam is open-source and cross-platform, and available for download on GitHub.

8.
J Synchrotron Radiat ; 24(Pt 6): 1237-1249, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091067

RESUMO

Continuous improvements at X-ray imaging beamlines at synchrotron light sources have made dynamic synchrotron X-ray micro-computed tomography (SXR-µCT) experiments more routinely available to users, with a rapid increase in demand given its tremendous potential in very diverse areas. In this work a survey of five different four-dimensional SXR-µCT experiments is presented, examining five different parameters linked to the evolution of the investigated system, and tackling problems in different areas in earth sciences. SXR-µCT is used to monitor the microstructural evolution of the investigated sample with the following variables: (i) high temperature, observing in situ oil shale pyrolysis; (ii) low temperature, replicating the generation of permafrost; (iii) high pressure, to study the invasion of supercritical CO2 in deep aquifers; (iv) uniaxial stress, to monitor the closure of a fracture filled with proppant, in shale; (v) reactive flow, to observe the evolution of the hydraulic properties in a porous rock subject to dissolution. For each of these examples, it is shown how dynamic SXR-µCT was able to provide new answers to questions related to climate and energy studies, highlighting the significant opportunities opened recently by the technique.

9.
Opt Express ; 25(2): 1030-1039, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28157984

RESUMO

Imaging fluorescent markers with brightness, photostability, and continuous emission with auto fluorescence background suppression in biological samples has always been challenging due to limitations of available and economical techniques. Here we report a new approach, to achieve high contrast imaging inside small and difficult biological systems with special geometry such as fire ants, an important agricultural pest, using a homemade cost-effective optical system. Unlike the commonly used rare-earth doped fluoride nanoparticles, we utilized nanoparticles with a high upconversion efficiency in water. Specifically Y2O3:Er+3,Yb+3 nanoparticles (40-50 nm diameter) were fed to fire ants as food and then a simple illuminating experiment was conducted at 980 nm wavelength at relatively low pump intensity8 kW.cm-2. The locations were further confirmed by X-ray tomography, where most particles aggregated inside the ant's mouth. High resolution, fast, and economical optical imaging system opens the door for studying more complex biological systems.


Assuntos
Nanopartículas , Imagem Óptica , Animais , Fluoretos , Insetos , Tomografia por Raios X
10.
Nano Lett ; 16(7): 4686-90, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336856

RESUMO

Control over porous electrode microstructure is critical for the continued improvement of electrochemical performance of lithium ion batteries. This paper describes a convenient and economical method for controlling electrode porosity, thereby enhancing material loading and stabilizing the cycling performance. Sacrificial NaCl is added to a Si-based electrode, which demonstrates an areal capacity of ∼4 mAh/cm(2) at a C/10 rate (0.51 mA/cm(2)) and an areal capacity of 3 mAh/cm(2) at a C/3 rate (1.7 mA/cm(2)), one of the highest material loadings reported for a Si-based anode at such a high cycling rate. X-ray microtomography confirmed the improved porous architecture of the SiO electrode with NaCl. The method developed here is expected to be compatible with the state-of-the-art lithium ion battery industrial fabrication processes and therefore holds great promise as a practical technique for boosting the electrochemical performance of lithium ion batteries without changing material systems.

11.
Nat Methods ; 10(9): 861-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23913258

RESUMO

We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical and morphological localization by determining a complete infrared spectrum for every voxel (millions of spectra determined per sample).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microtomografia por Raio-X/métodos , Animais , Células-Tronco Embrionárias/ultraestrutura , Cabelo/ultraestrutura , Humanos , Imageamento Tridimensional , Camundongos , Populus/ultraestrutura , Síncrotrons , Madeira/ultraestrutura
12.
J Synchrotron Radiat ; 23(Pt 5): 1197-201, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27577775

RESUMO

Nanomaterials are being used in medicine, manufacturing and consumer products, but their effects on organisms and the environment are not well understood because of the difficulty in detecting them. Here dual-energy X-ray K-edge subtraction was used to track two-dimensional yttrium oxide nanoparticles (which can be found in such household objects as color televisions) in adult mealworms (Tenebrio molitor). The insects ingested nanoparticle-infused feed for different time periods, up to 24 h, and the nanoparticles could then be identified at several locations in the insects' head, thorax and abdomen, mostly within the digestive tract. In time, all particles were excreted.


Assuntos
Nanopartículas Metálicas , Animais , Besouros , Larva , Tenebrio , Ítrio
13.
J Nanobiotechnology ; 14: 23, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27015946

RESUMO

BACKGROUND: The potential transfer of engineered nanoparticles (ENPs) from plants into the food chain has raised widespread concerns. In order to investigate the effects of ENPs on plants, young cabbage plants (Brassica oleracea) were exposed to a hydroponic system containing yttrium oxide (yttria) ENPs. The objective of this study was to reveal the impacts of NPs on plants by using K-edge subtraction imaging technique. RESULTS: Using synchrotron dual-energy X-ray micro-tomography with K-edge subtraction technique, we studied the uptake, accumulation, distribution and concentration mapping of yttria ENPs in cabbage plants. It was found that yttria ENPs were uptaken by the cabbage roots but did not effectively transferred and mobilized through the cabbage stem and leaves. This could be due to the accumulation of yttria ENPs blocked at primary-lateral-root junction. Instead, non-yttria minerals were found in the xylem vessels of roots and stem. CONCLUSIONS: Synchrotron dual-energy X-ray micro-tomography is an effective method to observe yttria NPs inside the cabbage plants in both whole body and microscale level. Furthermore, the blockage of a plant's roots by nanoparticles is likely the first and potentially fatal environmental effect of such type of nanoparticles.


Assuntos
Brassica/metabolismo , Nanopartículas/metabolismo , Ítrio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Microtomografia por Raio-X/métodos
14.
Nat Mater ; 13(1): 69-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270584

RESUMO

Failure caused by dendrite growth in high-energy-density, rechargeable batteries with lithium metal anodes has prevented their widespread use in applications ranging from consumer electronics to electric vehicles. Efforts to solve the lithium dendrite problem have focused on preventing the growth of protrusions from the anode surface. Synchrotron hard X-ray microtomography experiments on symmetric lithium-polymer-lithium cells cycled at 90 °C show that during the early stage of dendrite development, the bulk of the dendritic structure lies within the electrode, underneath the polymer/electrode interface. Furthermore, we observed crystalline impurities, present in the uncycled lithium anodes, at the base of the subsurface dendritic structures. The portion of the dendrite protruding into the electrolyte increases on cycling until it spans the electrolyte thickness, causing a short circuit. Contrary to conventional wisdom, it seems that preventing dendrite formation in polymer electrolytes depends on inhibiting the formation of subsurface structures in the lithium electrode.

15.
Am J Bot ; 102(11): 1814-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26507111

RESUMO

PREMISE OF THE STUDY: Recent phylogenetic analyses based on molecular data suggested that the monocot family Zingiberaceae be separated into four subfamilies and four tribes. Robust morphological characters to support these clades are lacking. Seeds were analyzed in a phylogenetic context to test independently the circumscription of clades and to better understand evolution of seed characters within Zingiberaceae. METHODS: Seventy-five species from three of the four subfamilies were analyzed using synchrotron based x-ray tomographic microscopy (SRXTM) and scored for 39 morphoanatomical characters. KEY RESULTS: Zingiberaceae seeds are some of the most structurally complex seeds in angiosperms. No single seed character was found to distinguish each subfamily, but combinations of characters were found to differentiate between the subfamilies. Recognition of the tribes based on seeds was possible for Globbeae, but not for Alpinieae, Riedelieae, or Zingibereae, due to considerable variation. CONCLUSIONS: SRXTM is an excellent, nondestructive tool to capture morphoanatomical variation of seeds and allows for the study of taxa with limited material available. Alpinioideae, Siphonochiloideae, Tamijioideae, and Zingiberoideae are well supported based on both molecular and morphological data, including multiple seed characters. Globbeae are well supported as a distinctive tribe within the Zingiberoideae, but no other tribe could be differentiated using seeds due to considerable homoplasy when compared with currently accepted relationships based on molecular data. Novel seed characters suggest tribal affinities for two currently unplaced Zingiberaceae taxa: Siliquamomum may be related to Riedelieae and Monolophus to Zingibereae, but further work is needed before formal revision of the family.


Assuntos
Sementes/anatomia & histologia , Zingiberaceae/anatomia & histologia , Evolução Biológica , Sementes/genética , Síncrotrons , Tomografia por Raios X , Zingiberaceae/genética
16.
J Synchrotron Radiat ; 21(Pt 6): 1224-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343788

RESUMO

Data Exchange is a simple data model designed to interface, or `exchange', data among different instruments, and to enable sharing of data analysis tools. Data Exchange focuses on technique rather than instrument descriptions, and on provenance tracking of analysis steps and results. In this paper the successful application of the Data Exchange model to a variety of X-ray techniques, including tomography, fluorescence spectroscopy, fluorescence tomography and photon correlation spectroscopy, is described.

17.
Nat Mater ; 12(1): 40-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223124

RESUMO

Ceramic matrix composites are the emerging material of choice for structures that will see temperatures above ~1,500 °C in hostile environments, as for example in next-generation gas turbines and hypersonic-flight applications. The safe operation of applications depends on how small cracks forming inside the material are restrained by its microstructure. As with natural tissue such as bone and seashells, the tailored microstructural complexity of ceramic matrix composites imparts them with mechanical toughness, which is essential to avoiding failure. Yet gathering three-dimensional observations of damage evolution in extreme environments has been a challenge. Using synchrotron X-ray computed microtomography, we have fully resolved sequences of microcrack damage as cracks grow under load at temperatures up to 1,750 °C. Our observations are key ingredients for the high-fidelity simulations used to compute failure risks under extreme operating conditions.


Assuntos
Cerâmica/química , Análise de Falha de Equipamento/métodos , Falha de Equipamento , Tomografia Computadorizada por Raios X/métodos , Síncrotrons , Tomografia Computadorizada por Raios X/instrumentação
18.
Sci Rep ; 14(1): 14655, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918485

RESUMO

Osteocytes locally remodel their surrounding tissue through perilacunar canalicular remodeling (PLR). During lactation, osteocytes remove minerals to satisfy the metabolic demand, resulting in increased lacunar volume, quantifiable with synchrotron X-ray radiation micro-tomography (SRµCT). Although the effects of lactation on PLR are well-studied, it remains unclear whether PLR occurs uniformly throughout the bone and what mechanisms prevent PLR from undermining bone quality. We used SRµCT imaging to conduct an in-depth spatial analysis of the impact of lactation and osteocyte-intrinsic MMP13 deletion on PLR in murine bone. We found larger lacunae undergoing PLR are located near canals in the mid-cortex or endosteum. We show lactation-induced hypomineralization occurs 14 µm away from lacunar edges, past a hypermineralized barrier. Our findings reveal that osteocyte-intrinsic MMP13 is crucial for lactation-induced PLR near lacunae in the mid-cortex but not for whole-bone resorption. This research highlights the spatial control of PLR on mineral distribution during lactation.


Assuntos
Remodelação Óssea , Lactação , Osteócitos , Microtomografia por Raio-X , Animais , Lactação/fisiologia , Feminino , Osteócitos/metabolismo , Osteócitos/fisiologia , Camundongos , Remodelação Óssea/fisiologia , Metaloproteinase 13 da Matriz/metabolismo
19.
ACS Appl Energy Mater ; 7(7): 2989-3008, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38606033

RESUMO

Porous composite battery electrode performance is influenced by a large number of manufacturing decisions. While it is common to evaluate only finished electrodes when making process adjustments, one must then make inferences about the fabrication process dynamics from static results, which makes process optimization very costly and time-consuming. To get information about the dynamics of the manufacturing processes of these composites, we have built a miniature coating and drying apparatus capable of fabricating lab-scale electrode laminates while operating within an X-ray beamline hutch. Using this tool, we have collected the first radiography image sequences of lab-scale battery electrode coatings in profile, taken throughout drying processes conducted under industrially relevant conditions. To assist with interpretation of these image sequences, we developed an automated image analysis program. Here, we discuss our observations of battery electrode slurry samples, including stratification and long-term fluid flow, and their relevance to composite electrode manufacturing.

20.
J Struct Biol ; 184(1): 12-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23531637

RESUMO

Correlative microscopy techniques interrogate biological systems more thoroughly than is possible using a single modality. This is particularly true if disparate data types can be acquired from the same specimen. Recently, there has been significant progress towards combining the structural information obtained from soft X-ray tomography (SXT) with molecular localization data. Here we will compare methods for determining the position of molecules in a cell viewed by SXT, including direct visualization using electron dense labels, and by indirect methods, such as fluorescence microscopy and high numerical aperture cryo-light microscopy. We will also discuss available options for preserving the in vivo structure and organization of the specimen during multi-modal data collection, and how some simple specimen mounting concepts can ensure maximal data completeness in correlative imaging experiments.


Assuntos
Microscopia de Fluorescência/métodos , Tomografia por Raios X/métodos , Criopreservação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA