Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1301: 7-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370285

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with a dismal 5-year survival rate of 5% and very limited efficacy of the current therapeutic regimens. The lethality of PDAC stems from asymptomatic early stage of the disease, its propensity to rapidly disseminate, as well as unusual, dense and highly active surrounding stroma. Fortunately, promising literature data suggests that exploiting newly contextualized type of cell death, termed "ferroptosis", has great potential for overcoming the major problems regarding PDAC treatment. A major player in this type of cell death is Glutamate/Cystine antiporter - xCT, which is responsible for the uptake of oxidized form of cysteine, and thus maintenance of intracellular amino acid and redox homeostasis. xCT seems to fulfill all requirements of the solid and specific molecular target for ferroptosis-based anti-cancer therapy. In this chapter we summarized mounting literature data supporting this hypothesis, but also, we pointed out some of the underexamined aspects of xCT-dependent (patho)physiology of the cancer cell, which have to be addressed in future studies. The abstract could be used as "informative abstract" for the online version.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Morte Celular , Cistina/metabolismo , Humanos , Oxirredução , Neoplasias Pancreáticas/tratamento farmacológico
2.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375025

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) integrates signals from growth factors and nutrients to control biosynthetic processes, including protein, lipid, and nucleic acid synthesis. Dysregulation in the mTORC1 network underlies a wide array of pathological states, including metabolic diseases, neurological disorders, and cancer. Tumor cells are characterized by uncontrolled growth and proliferation due to a reduced dependency on exogenous growth factors. The genetic events underlying this property, such as mutations in the PI3K-Akt and Ras-Erk signaling networks, lead to constitutive activation of mTORC1 in nearly all human cancer lineages. Aberrant activation of mTORC1 has been shown to play a key role for both anabolic tumor growth and resistance to targeted therapeutics. While displaying a growth factor-independent mTORC1 activity and proliferation, tumors cells remain dependent on exogenous nutrients such as amino acids (AAs). AAs are an essential class of nutrients that are obligatory for the survival of any cell. Known as the building blocks of proteins, AAs also act as essential metabolites for numerous biosynthetic processes such as fatty acids, membrane lipids and nucleotides synthesis, as well as for maintaining redox homeostasis. In most tumor types, mTORC1 activity is particularly sensitive to intracellular AA levels. This dependency, therefore, creates a targetable vulnerability point as cancer cells become dependent on AA transporters to sustain their homeostasis. The following review will discuss the role of AA transporters for mTORC1 signaling in cancer cells and their potential as therapeutic drug targets.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Sistemas de Transporte de Aminoácidos/genética , Animais , Proliferação de Células/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutação , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
J Biol Chem ; 293(8): 2877-2887, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29326164

RESUMO

The transporters for glutamine and essential amino acids, ASCT2 (solute carrier family 1 member 5, SLC1A5) and LAT1 (solute carrier family 7 member 5, SLC7A5), respectively, are overexpressed in aggressive cancers and have been identified as cancer-promoting targets. Moreover, previous work has suggested that glutamine influx via ASCT2 triggers essential amino acids entry via the LAT1 exchanger, thus activating mechanistic target of rapamycin complex 1 (mTORC1) and stimulating growth. Here, to further investigate whether these two transporters are functionally coupled, we compared the respective knockout (KO) of either LAT1 or ASCT2 in colon (LS174T) and lung (A549) adenocarcinoma cell lines. Although ASCT2KO significantly reduced glutamine import (>60% reduction), no impact on leucine uptake was observed in both cell lines. Although an in vitro growth-reduction phenotype was observed in A549-ASCT2KO cells only, we found that genetic disruption of ASCT2 strongly decreased tumor growth in both cell lines. However, in sharp contrast to LAT1KO cells, ASCT2KO cells displayed no amino acid (AA) stress response (GCN2/EIF2a/ATF4) or altered mTORC1 activity (S6K1/S6). We therefore conclude that ASCT2KO reduces tumor growth by limiting AA import, but that this effect is independent of LAT1 activity. These data were further supported by in vitro cell proliferation experiments performed in the absence of glutamine. Together these results confirm and extend ASCT2's pro-tumoral role and indicate that the proposed functional coupling model of ASCT2 and LAT1 is not universal across different cancer types.


Assuntos
Adenocarcinoma/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias do Colo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias Pulmonares/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas de Neoplasias/metabolismo , Absorção Fisiológica/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Glutamina/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Camundongos Nus , Antígenos de Histocompatibilidade Menor/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Semin Cancer Biol ; 43: 66-73, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28137473

RESUMO

Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pHi) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pHi regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pHi in the continued presence of external acidification (pHe). Considerable experimentation has revealed targets that successfully disrupt tumour pHi regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na+/H+ exchangers (NHEs), carbonic anhydrases (CAs), Na+/HCO3- co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pHi when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives.


Assuntos
Anidrases Carbônicas/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/terapia , Humanos , Neoplasias/metabolismo
5.
BMC Cancer ; 18(1): 249, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506489

RESUMO

BACKGROUND: In mammals, the AKT/PKB protein kinase family comprises three members (AKT1-3). PI3-Kinase (PI3K), a key oncogene involved in a wide variety of cancers, drives AKT activity. Constitutive activation of the PI3K/AKT pathway has been associated with tumorigenic properties including uncontrolled cell proliferation and survival, angiogenesis, promotion of cellular motility, invasiveness and metastasis. However, AKT1 activity has also been recently shown to repress the invasive properties of breast cancer cells in specific contexts. METHODS: This study used both pharmacological and shRNA approaches to inhibit AKT function, microscopy to characterize the cellular morphology, 3D spheroid models to assess migratory and invasive cellular capacities and a phenotypic screening approach based on electrical properties of the cells. RESULTS: Here we demonstrate that the alternative action of AKT1 on invasive properties of breast cancers can be extended to head and neck carcinomas, which exhibit constitutive activation of the PI3K/AKT pathway. Indeed, inhibition of AKT1 function by shRNA or a specific pharmacological inhibitor resulted in cellular spreading and an invasive phenotype. A phenotypic screening approach based on cellular electrical properties corroborated microscopic observations and provides a foundation for future high-throughput screening studies. This technique further showed that the inhibition of AKT1 signaling is phenocopied by blocking the mTORC1 pathway with rapamycin. CONCLUSION: Our study suggests that the repressive action of PI3K/AKT1 on cellular invasive properties may be a mechanism common to several cancers. Current and future studies involving AKT inhibitors must therefore consider this property to prevent metastases and consequently to improve survival.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias de Cabeça e Pescoço/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Neoplasias de Cabeça e Pescoço/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Células Tumorais Cultivadas
6.
J Physiol ; 595(8): 2439-2450, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28074546

RESUMO

Cancer cells are optimised for growth and survival via an ability to outcompete normal cells in their microenvironment. Many of these advantageous cellular adaptations are promoted by the pathophysiological hypoxia that arises in solid tumours due to incomplete vascularisation. Tumour cells are thus faced with the challenge of an increased need for nutrients to support the drive for proliferation in the face of a diminished extracellular supply. Among the many modifications occurring in tumour cells, hypoxia inducible factors (HIFs) act as essential drivers of key pro-survival pathways via the promotion of numerous membrane and cytosolic proteins. Here we focus our attention on two areas: the role of amino acid uptake and the handling of metabolic acid (CO2 /H+ ) production. We provide evidence for a number of hypoxia-induced proteins that promote cellular anabolism and regulation of metabolic acid-base levels in tumour cells including amino-acid transporters (LAT1), monocarboxylate transporters, and acid-base regulating carbonic anhydrases (CAs) and bicarbonate transporters (NBCs). Emphasis is placed on current work manipulating multiple CA isoforms and NBCs, which is at an interesting crossroads of gas physiology as they are regulated by hypoxia to contribute to the cellular handling of CO2 and pHi regulation. Our research combined with others indicates that targeting of HIF-regulated membrane proteins in tumour cells will provide promising future anti-cancer therapeutic approaches and we suggest strategies that could be potentially used to enhance these tactics.


Assuntos
Hipóxia/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Anidrases Carbônicas/metabolismo , Hipóxia Celular/fisiologia , Humanos , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/fisiopatologia
7.
Consult Pharm ; 31(2): 112-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26842689

RESUMO

OBJECTIVE: Medication errors continue to be a major issue in the health care system, including in long-term care facilities. While many hospitals and health systems have developed methods to identify, track, and prevent these errors, long-term care facilities historically have not invested in these error-prevention strategies. The objective of this study was two-fold: 1) to develop a set of medication-safety process measures for dispensing in a long-term care pharmacy, and 2) to analyze the data from those measures to determine the relative safety of the process. DESIGN/SETTING/PARTICIPANTS: The study was conducted at In Touch Pharmaceuticals in Valparaiso, Indiana. To assess the safety of the medication-use system, each step was documented using a comprehensive flowchart (process flow map) tool. Once completed and validated, the flowchart was used to complete a "failure modes and effects analysis" (FMEA) identifying ways a process may fail. Operational gaps found during FMEA were used to identify points of measurement. The research identified a set of eight measures as potential areas of failure; data were then collected on each one of these. RESULTS: More than 133,000 medication doses (opportunities for errors) were included in the study during the research time frame (April 1, 2014, and ended on June 4, 2014). Overall, there was an approximate order-entry error rate of 15.26%, with intravenous errors at 0.37%. A total of 21 errors migrated through the entire medication-use system. These 21 errors in 133,000 opportunities resulted in a final check error rate of 0.015%. CONCLUSION: A comprehensive medication-safety measurement program was designed and assessed. This study demonstrated the ability to detect medication errors in a long-term pharmacy setting, thereby making process improvements measureable. Future, larger, multi-site studies should be completed to test this measurement program.


Assuntos
Assistência de Longa Duração/organização & administração , Erros de Medicação/prevenção & controle , Sistemas de Medicação/normas , Assistência Farmacêutica/organização & administração , Humanos , Indiana , Assistência de Longa Duração/normas , Preparações Farmacêuticas/administração & dosagem , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde
8.
J Cell Physiol ; 230(8): 1954-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25612232

RESUMO

The hypoxic and acidic tumor environment necessitates intracellular pH (pHi) regulation for tumor progression. Carbonic anhydrase IX (CA IX; hypoxia-induced) is known to facilitate CO2 export and generate HCO3(-) in the extracellular tumor space. It has been proposed that HCO3(-) is re-captured by the cell to maintain an alkaline pHi . A diverse range of HCO3(-) transporters, coupled with a lack of a clear over-expression in cancers have limited molecular identification of this cellular process. Here, we report that hypoxia induces the Na(+)/HCO3(-) co-transporter (NBCe1) SLC4A4 mRNA expression exclusively in the LS174 colon adenocarcinoma cell line in a HIF1α dependent manner. HCO3(-) dependent pHi recovery observations revealed the predominant use of an NBC mechanism suggesting that reversal of a Cl(-)/HCO3(-) exchanger is not utilized for tumor cell pHi regulation. Knockdown of SLC4A4 via shRNA reduced cell proliferation and increased mortality during external acidosis and spheroid growth. pHi recovery from acidosis was partially reduced with knockdown of SLC4A4. In MDA-MB-231 breast cancer cells expressing high levels of SLC4A4 compared to LS174 cells, SLC4A4 knockdown had a strong impact on cell proliferation, migration, and invasion. SLC4A4 knockdown also altered expression of other proteins including CA IX. Furthermore the Na(+)/HCO3(-) dependent pHi recovery from acidosis was reduced with SLC4A4 knockdown in MDA-MB-231 cells. Combined our results indicate that SLC4A4 contributes to the HCO3(-) transport and tumor cell phenotype. This study complements the on-going molecular characterization of the HCO3(-) re-uptake mechanism in other tumor cells for future strategies targeting these potentially important drug targets.


Assuntos
Bicarbonatos/metabolismo , Neoplasias da Mama/patologia , Neoplasias do Colo/patologia , Simportadores de Sódio-Bicarbonato/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Neoplasias do Colo/metabolismo , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Reação em Cadeia da Polimerase em Tempo Real
9.
J Enzyme Inhib Med Chem ; 30(5): 689-721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25347767

RESUMO

The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.


Assuntos
Descoberta de Drogas , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neoplasias/patologia , Relação Estrutura-Atividade
10.
J Cell Physiol ; 228(9): 1854-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23459996

RESUMO

The efficacy of targeting pH disruption to induce cell death in the acidic and hypoxic tumor microenvironment continues to be assessed. Here we analyzed the impact of varying levels of hypoxia in acidic conditions on fibroblast and tumor cell survival. Across all cell lines tested, hypoxia (1% O(2)) provided protection against acidosis induced cell death compared to normoxia. Meanwhile severe hypoxia (0.1% O(2)) removed this protection and in some cases exacerbated acidosis-induced cell death. Differential survival between cell types during external acidosis correlated with their respective intracellular pH regulating capabilities. Cellular ATP measurements were conducted to determine their contribution to cell survival under these combined stresses. In general, hypoxia (1% O(2)) maintained elevated ATP levels in acidic conditions while severe hypoxia did not. To further explore this interaction we combined acidosis with ATP depletion using 2-deoxyglucose and observed an enhanced rate of cell mortality. Striking results were also observed with hypoxia providing protection against cell death in spite of a severe metabolic stress induced by a combination of acidosis and oligomycin. Finally, we demonstrated that both HIF1α and HIF2α expression were drastically reduced in hypoxic and acidic conditions indicating a sensitivity of this protein to cellular pH conditions. This knockdown of HIF expression by acidosis has implications for the development of therapies targeting the disruption of cellular pH regulation. Our results reinforce the proof of concept that acidosis and metabolic disruption affecting ATP levels could be exploited as a tumor cell killing strategy.


Assuntos
Trifosfato de Adenosina/metabolismo , Hipóxia Celular/fisiologia , Neoplasias/metabolismo , Microambiente Tumoral , Acidose , Trifosfato de Adenosina/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetinae , Cricetulus , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/patologia
11.
Proc Natl Acad Sci U S A ; 107(1): 442-7, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018667

RESUMO

pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO(3)(-)). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H(+)) and HCO(3)(-) at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO(3)(-) and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO(3)(-) levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H(+) into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Adenilil Ciclases/metabolismo , Bicarbonatos/metabolismo , Homeostase , Inibidores de Adenilil Ciclases , Adenilil Ciclases/classificação , Adenilil Ciclases/genética , Alcalose/metabolismo , Animais , Cação (Peixe) , Brânquias/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia
12.
Nat Protoc ; 17(11): 2668-2698, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986218

RESUMO

Identifying metabolites and delineating their immune-regulatory contribution in the tumor microenvironment is an area of intense study. Interrogating metabolites and metabolic networks among immune cell subsets and host cells from resected tissues and fluids of human patients presents a major challenge, owing to the specialized handling of samples for downstream metabolomics. To address this, we first outline the importance of collaborating with a biobank for coordinating and streamlining workflow for point of care, sample collection, processing and cryopreservation. After specimen collection, we describe our 60-min rapid bead-based cellular enrichment method that supports metabolite analysis between T cells and tumor cells by mass spectrometry. We also describe how the metabolic data can be complemented with metabolic profiling by flow cytometry. This protocol can serve as a foundation for interrogating the metabolism of cell subsets from primary human ovarian cancer.


Assuntos
Ascite , Neoplasias Ovarianas , Humanos , Feminino , Ascite/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Metabolômica/métodos , Microambiente Tumoral , Linfócitos/metabolismo
13.
J Cell Physiol ; 226(2): 299-308, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20857482

RESUMO

A distinguishing phenotype of solid tumors is the presence of an alkaline cellular feature despite the surrounding acidic microenvironment. This phenotypic characteristic of tumors, originally described by Otto Warburg, arises due to alterations in metabolism of solid tumors. Hypoxic regions of solid tumors develop due to poor vascularization and in turn regulate the expression of numerous genes via the transcription factor HIF-1. Ultimately, the tumor microenvironment directs the development of tumor cells adapted to survive in an acidic surrounding where normal cells perish. The provision of unique pH characteristics in tumor cells provides a defining trait that has led to the pursuit of treatments that target metabolism, hypoxia, and pH-related mechanisms to selectively kill cancer cells. Numerous studies over the past decade involving the cancer-specific carbonic anhydrase IX have re-kindled an interest in pH disruption-based therapies. Although an acidification of the intracellular compartment is established as a means to induce normal cell death, the defining role of acid-base disturbances in tumor physiology and survival remains unclear. The aim of this review is to summarize recent data relating to the specific role of pH regulation in tumor cell survival. We focus on membrane transport and enzyme studies in an attempt to elucidate their respective functions regarding tumor cell pH regulation. These data are discussed in the context of future directions for the field of tumor cell acid-base-related research.


Assuntos
Concentração de Íons de Hidrogênio , Neoplasias , Microambiente Tumoral , Anidrases Carbônicas/metabolismo , Hipóxia Celular/fisiologia , Sobrevivência Celular , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia
14.
Cancers (Basel) ; 13(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801101

RESUMO

In our previous study, we showed that a cystine transporter (xCT) plays a pivotal role in ferroptosis of pancreatic ductal adenocarcinoma (PDAC) cells in vitro. However, in vivo xCTKO cells grew normally indicating that a mechanism exists to drastically suppress the ferroptotic phenotype. We hypothesized that plasma and neighboring cells within the tumor mass provide a source of cysteine to confer full ferroptosis resistance to xCTKO PDAC cells. To evaluate this hypothesis, we (co-) cultured xCTKO PDAC cells with different xCT-proficient cells or with their conditioned media. Our data unequivocally showed that the presence of a cysteine/cystine shuttle between neighboring cells is the mechanism that provides redox and nutrient balance, and thus ferroptotic resistance in xCTKO cells. Interestingly, although a glutathione shuttle between cells represents a good alternative hypothesis as a "rescue-mechanism", our data clearly demonstrated that the xCTKO phenotype is suppressed even with conditioned media from cells lacking the glutathione biosynthesis enzyme. Furthermore, we demonstrated that prevention of lipid hydroperoxide accumulation in vivo is mediated by import of cysteine into xCTKO cells via several genetically and pharmacologically identified transporters (ASCT1, ASCT2, LAT1, SNATs). Collectively, these data highlight the importance of the tumor environment in the ferroptosis sensitivity of cancer cells.

15.
Gen Comp Endocrinol ; 166(2): 296-306, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19835876

RESUMO

Previous results suggest that gonadotropin-releasing hormone (GnRH) stimulation of somatotropin secretion in goldfish involves activation of Na(+)/H(+) exchange (NHE). We tested the hypothesis that GnRH alkalinizes intracellular pH (pH(i)) via protein kinase C (PKC) activation of NHE. Two types of alkalinization responses were observed in identified goldfish somatotropes preloaded with the pH-sensitive dye BCECF; the rate of pH(i) changes went from a neutral or slightly negative slope to either a positive or a less negative slope relative to control. Two GnRHs, the PKC-activating TPA, and dioctanoyl glycerol each caused an alkalinization in 70-90% of somatotropes. The PKC inhibitors, Bis II and Gö6976, the NHE inhibitor amiloride, or Na(+)-free solution attenuated TPA and GnRHs actions, suggesting that PKC mediates GnRH activation of NHE. Since amiloride and Na(+)-free solution caused acidification in somatotropes at rest, regulation of basal pH(i) in these cells likely involves Na(+) flux through amiloride-sensitive NHE.


Assuntos
Carpa Dourada/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Proteína Quinase C/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Somatotrofos/metabolismo , Amilorida/farmacologia , Animais , Ativação Enzimática/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Concentração de Íons de Hidrogênio , Masculino , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Somatotrofos/enzimologia , Acetato de Tetradecanoilforbol/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-19857597

RESUMO

We have studied intracellular pH (pH(i)) recovery in isolated trout gill mitochondrion-rich (MR) cells following acidification by the NH(4)Cl pre-pulse technique. Within a mixed MR cell population, one cell type displayed Na(+)-independent pH(i) recovery while the other cell type lacked a Na(+)-independent pH(i) recovery. Cells displaying Na(+) independent recovery exhibited a significantly higher buffering capacity compared to cells lacking Na(+)-independent pH(i) recovery. Cells displaying Na(+) independent recovery were identified as PNA(+) (peanut lectin agluttinin binding) MR cells while those unable to recover were identified as PNA(-) (non-peanut lectin agluttinin binding) MR cells. Therefore, recovery from acidification in the absence of Na(+) provides a direct functional marker for PNA(+) and PNA(-) MR cells. Re-addition of Na(+) to acidified cells resulted in a transient pH(i) recovery in both cell types. This event was abolished by amiloride (500 microM) but it was insensitive to phenamil (50 microM). The phorbol ester PMA (1 microM) potentiated the Na(+) induced pH(i) recovery suggesting that activation by PKC is required for continuous Na(+)/H(+) exchanger activity in trout gill MR cells. This study is the first functional description of pH(i) recovery in lectin-identified trout gill MR cells and provides insight into a putative cellular signaling mechanism that may control pH(i) regulation in the gill epithelium.


Assuntos
Proteínas de Peixes/fisiologia , Brânquias/metabolismo , Mitocôndrias/metabolismo , Oncorhynchus mykiss/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Amilorida/farmacologia , Cloreto de Amônio/farmacologia , Animais , Sinergismo Farmacológico , Brânquias/citologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Espaço Intracelular/metabolismo , Sódio/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
17.
Gen Comp Endocrinol ; 161(1): 42-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18838074

RESUMO

In teleosts, gonadotropin (GTH) secretion and synthesis is controlled by multiple neuroendocrine factors from the hypothalamus, pituitary and peripheral sources. Pituitary gonadotropes must be able to differentiate and integrate information from these regulators at the cellular and intracellular level. In this article, the intracellular signal transduction mechanisms mediating the actions of some of these regulators, including GTH-releasing hormones, pituitary adenylate cyclase-activating polypeptide, dopamine, ghrelin, sex steroids, activin, and follistatin from experiments with goldfish are reviewed and discussed in relation with recent findings. Information from other teleost models is briefly compared. Goldfish gonadotropes possess multiple pharmacologically distinct intracellular Ca2+ stores that together with voltage-sensitive Ca2+ channels, Na+/H+ exchangers, protein kinase C, arachidonic acid, NO, protein kinase A, ERK/MAPK, and Smads allows for integrated control by different neuroendocrine factors.


Assuntos
Gonadotropinas/metabolismo , Transdução de Sinais , Animais , Dopamina/fisiologia , Regulação da Expressão Gênica , Grelina/fisiologia , Carpa Dourada/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Gonadotrofos/efeitos dos fármacos , Gonadotrofos/fisiologia , Gonadotropinas/fisiologia , Hormônio Luteinizante/biossíntese , Modelos Biológicos , Neuropeptídeo Y/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Hipófise/fisiologia
18.
Cancer Res ; 79(15): 3877-3890, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175120

RESUMO

Although chemoresistance remains a primary challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC), exploiting oxidative stress might offer novel therapeutic clues. Here we explored the potential of targeting cystine/glutamate exchanger (SLC7A11/xCT), which contributes to the maintenance of intracellular glutathione (GSH). Genomic disruption of xCT via CRISPR-Cas9 was achieved in two PDAC cell lines, MiaPaCa-2 and Capan-2, and xCT-KO clones were cultivated in the presence of N-acetylcysteine. Although several cystine/cysteine transporters have been identified, our findings demonstrate that, in vitro, xCT plays the major role in intracellular cysteine balance and GSH biosynthesis. As a consequence, both xCT-KO cell lines exhibited amino acid stress with activation of GCN2 and subsequent induction of ATF4, inhibition of mTORC1, proliferation arrest, and cell death. Tumor xenograft growth was delayed but not suppressed in xCT-KO cells, which indicated both the key role of xCT and also the presence of additional mechanisms for cysteine homeostasis in vivo. Moreover, rapid depletion of intracellular GSH in xCT-KO cells led to accumulation of lipid peroxides and cell swelling. These two hallmarks of ferroptotic cell death were prevented by vitamin E or iron chelation. Finally, in vitro pharmacologic inhibition of xCT by low concentrations of erastin phenocopied xCT-KO and potentiated the cytotoxic effects of both gemcitabine and cisplatin in PDAC cell lines. In conclusion, our findings strongly support that inhibition of xCT, by its dual induction of nutritional and oxidative cellular stresses, has great potential as an anticancer strategy. SIGNIFICANCE: The cystine/glutamate exchanger xCT is essential for amino acid and redox homeostasis and its inhibition has potential for anticancer therapy by inducing ferroptosis.


Assuntos
Técnicas de Ablação/métodos , Cistina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Estresse Oxidativo
19.
Adv Biol Regul ; 68: 55-63, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29306548

RESUMO

The evolution of life from extreme hypoxic environments to an oxygen-rich atmosphere has progressively selected for successful metabolic, enzymatic and bioenergetic networks through which a myriad of organisms survive the most extreme environmental conditions. From the two lethal environments anoxia/high O2, cells have developed survival strategies through expression of the transcriptional factors ATF4, HIF1 and NRF2. Cancer cells largely exploit these factors to thrive and resist therapies. In this review, we report and discuss the potential therapeutic benefit of disrupting the major Myc/Hypoxia-induced metabolic pathway, also known as fermentative glycolysis or "Warburg effect", in aggressive cancer cell lines. With three examples of genetic disruption of this pathway: glucose-6-phosphate isomerase (GPI), lactate dehydrogenases (LDHA and B) and lactic acid transporters (MCT1, MCT4), we illuminate how cancer cells exploit metabolic plasticity to survive the metabolic and energetic blockade or arrest their growth. In this context of NRF2 contribution to OXPHOS re-activation we will show and discuss how, by disruption of the cystine transporter xCT (SLC7A11), we can exploit the acute lethal phospholipid peroxidation pathway to induce cancer cell death by 'ferroptosis'.


Assuntos
Morte Celular/fisiologia , Animais , Morte Celular/genética , Linhagem Celular Tumoral , Humanos , Lactato Desidrogenases/metabolismo , Ácido Láctico/metabolismo , Estresse Oxidativo/fisiologia
20.
Front Oncol ; 7: 319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312889

RESUMO

A fine balance in reactive oxygen species (ROS) production and removal is of utmost importance for homeostasis of all cells and especially in highly proliferating cells that encounter increased ROS production due to enhanced metabolism. Consequently, increased production of these highly reactive molecules requires coupling with increased antioxidant defense production within cells. This coupling is observed in cancer cells that allocate significant energy reserves to maintain their intracellular redox balance. Glutathione (GSH), as a first line of defense, represents the most important, non-enzymatic antioxidant component together with the NADPH/NADP+ couple, which ensures the maintenance of the pool of reduced GSH. In this review, the central role of amino acids (AAs) in the maintenance of redox homeostasis in cancer, through GSH synthesis (cysteine, glutamate, and glycine), and nicotinamide adenine dinucleotide (phosphate) production (serine, and glutamine/glutamate) are illustrated. Special emphasis is placed on the importance of AA transporters known to be upregulated in cancers (such as system xc-light chain and alanine-serine-cysteine transporter 2) in the maintenance of AA homeostasis, and thus indirectly, the redox homeostasis of cancer cells. The role of the ROS varies (often described as a "two-edged sword") during the processes of carcinogenesis, metastasis, and cancer treatment. Therefore, the context-dependent role of specific AAs in the initiation, progression, and dissemination of cancer, as well as in the redox-dependent sensitivity/resistance of the neoplastic cells to chemotherapy are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA