Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1860(2): 378-383, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28993151

RESUMO

The field of membrane protein structural biology has been revolutionized over the last few years with a number of high profile structures being solved using cryo-EM including Piezo, Ryanodine receptor, TRPV1 and the Glutamate receptor. Further developments in the EM field hold the promise of even greater progress in terms of greater resolution, which for membrane proteins is still typically within the 4-7Å range. One advantage of a cryo-EM approach is the ability to study membrane proteins in more "native" like environments for example proteoliposomes, amphipols and nanodiscs. Recently, styrene maleic acid co-polymers (SMA) have been used to extract membrane proteins surrounded by native lipids (SMALPs) maintaining a more natural environment. We report here the structure of the Escherichia coli multidrug efflux transporter AcrB in a SMALP scaffold to sub-nm resolution, with the resulting map being consistent with high resolution crystal structures and other EM derived maps. However, both the C-terminal helix (TM12) and TM7 are poorly defined in the map. These helices are at the exterior of the helical bundle and form the greater interaction with the native lipids and SMA polymer and may represent a more dynamic region of the protein. This work shows the promise of using an SMA approach for single particle cryo-EM studies to provide sub-nm structures.


Assuntos
Microscopia Crioeletrônica/métodos , Bicamadas Lipídicas/química , Maleatos/química , Proteínas de Membrana/química , Poliestirenos/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/ultraestrutura , Conformação Proteica , Multimerização Proteica , Proteolipídeos/química , Proteolipídeos/ultraestrutura
2.
Biochem Soc Trans ; 44(3): 877-82, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27284055

RESUMO

Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method.


Assuntos
Proteínas de Membrana/isolamento & purificação , Membranas Artificiais , Métodos , Bactérias/metabolismo , Eucariotos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia
3.
Microorganisms ; 8(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585951

RESUMO

Salmonella is an important genus of Gram-negative pathogens, treatment of which has become problematic due to increases in antimicrobial resistance. This is partly attributable to the overexpression of tripartite efflux pumps, particularly the constitutively expressed AcrAB-TolC. Despite its clinical importance, the structure of the Salmonella AcrB transporter remained unknown to-date, with much of our structural understanding coming from the Escherichia coli orthologue. Here, by taking advantage of the styrene maleic acid (SMA) technology to isolate membrane proteins with closely associated lipids, we report the very first experimental structure of Salmonella AcrB transporter. Furthermore, this novel structure provides additional insight into mechanisms of drug efflux as it bears the mutation (G288D), originating from a clinical isolate of Salmonella Typhimurium presenting an increased resistance to fluoroquinolones. Experimental data are complemented by state-of-the-art molecular dynamics (MD) simulations on both the wild type and G288D variant of Salmonella AcrB. Together, these reveal several important differences with respect to the E. coli protein, providing insights into the role of the G288D mutation in increasing drug efflux and extending our understanding of the mechanisms underlying antibiotic resistance.

4.
Biochim Biophys Acta Biomembr ; 1861(8): 1437-1445, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150633

RESUMO

Most membrane proteins function through interactions with other proteins in the phospholipid bilayer, the cytosol or the extracellular milieu. Understanding the molecular basis of these interactions is key to understanding membrane protein function and dysfunction. Here we demonstrate for the first time how a nano-encapsulation method based on styrene maleic acid lipid particles (SMALPs) can be used in combination with native gel electrophoresis to separate membrane protein complexes in their native state. Using four model proteins, we show that this separation method provides an excellent measure of protein quaternary structure, and that the lipid environment surrounding the protein(s) can be probed using mass spectrometry. We also show that the method is complementary to immunoblotting. Finally we show that intact membrane protein-SMALPs extracted from a band on a gel could be visualised using electron microscopy (EM). Taken together these results provide a novel and elegant method for investigating membrane protein complexes in a native state.


Assuntos
Proteínas de Membrana/química , Nanotecnologia , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Western Blotting , Lipídeos/química , Espectrometria de Massas , Microscopia Eletrônica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA